目的:探讨人-器械相互作用过程中的动力学关系,为后期优化踏板技术提供理论基础。方法:在Life Mo D中建立19个环节的多体动力学模型和助跳板,并展开助跳板力学特性的仿真研究。结果:踏跳过程中体操运动员受到的踏板反作用力峰值随着助...目的:探讨人-器械相互作用过程中的动力学关系,为后期优化踏板技术提供理论基础。方法:在Life Mo D中建立19个环节的多体动力学模型和助跳板,并展开助跳板力学特性的仿真研究。结果:踏跳过程中体操运动员受到的踏板反作用力峰值随着助跳板弹簧的刚度、阻尼以及板面体刚度的增加而增大,而随着板面体阻尼的增加而减小;增加助跳板弹簧的刚度能有效地提高体操运动员踏板后的垂直起跳速度,而改变助跳板弹簧的阻尼以及板面体的刚度和阻尼则影响不明显;增加助跳板面体的阻尼虽能减小踏板反作用力的峰值,但其负载率也明显增大。建议在满足人体肌骨系统能够承载的生理范围内,适当增加助跳板的刚度有助于完成更高难度的技术动作。展开更多
The aim of this study is to analyze the simulated behavior of universal spacer in Dynesys dynamic stabilization system inserted in human vertebra. Dynesys, so-called "Dynamic neutralization system for the spine&q...The aim of this study is to analyze the simulated behavior of universal spacer in Dynesys dynamic stabilization system inserted in human vertebra. Dynesys, so-called "Dynamic neutralization system for the spine", dynamic stabilization system is a new concept in the surgical treatment of lower back pain recently. Universal spacer used as flexible material is to stabilize the spine and the material property of universal spacer is polycarbonate urethane. Universal spacer may apply different kinematic behaviors at implanted level in vertebra. Spinal range of motion(SROM) of inter-vertebra with installed Dynesys dynamic stabilization system was studied using Adams+LifeMOD as simulation software package. The vertebra model was set up to closely resemble the in-vivo conditions. Inter-vertebra rotations were measured by post processor of Adams and compared with the intact values. SROMs of the flexion, extension, lateral bending, and axial rotation of human virtual models were measured, where three spinal fixation systems such as rigid system, Dynesys system, and fused system were installed. As a result, the value of SROM is decreased in flexion-extension and lateral bending when the spinal fixation system is implanted. The movement of Dynesys system is similar to that of intact model by allowing the movement of lumbar. This means that the Dynesys system is proved to be safe and effective in the treatment of unstable spinal condition.展开更多
文摘目的:探讨人-器械相互作用过程中的动力学关系,为后期优化踏板技术提供理论基础。方法:在Life Mo D中建立19个环节的多体动力学模型和助跳板,并展开助跳板力学特性的仿真研究。结果:踏跳过程中体操运动员受到的踏板反作用力峰值随着助跳板弹簧的刚度、阻尼以及板面体刚度的增加而增大,而随着板面体阻尼的增加而减小;增加助跳板弹簧的刚度能有效地提高体操运动员踏板后的垂直起跳速度,而改变助跳板弹簧的阻尼以及板面体的刚度和阻尼则影响不明显;增加助跳板面体的阻尼虽能减小踏板反作用力的峰值,但其负载率也明显增大。建议在满足人体肌骨系统能够承载的生理范围内,适当增加助跳板的刚度有助于完成更高难度的技术动作。
文摘The aim of this study is to analyze the simulated behavior of universal spacer in Dynesys dynamic stabilization system inserted in human vertebra. Dynesys, so-called "Dynamic neutralization system for the spine", dynamic stabilization system is a new concept in the surgical treatment of lower back pain recently. Universal spacer used as flexible material is to stabilize the spine and the material property of universal spacer is polycarbonate urethane. Universal spacer may apply different kinematic behaviors at implanted level in vertebra. Spinal range of motion(SROM) of inter-vertebra with installed Dynesys dynamic stabilization system was studied using Adams+LifeMOD as simulation software package. The vertebra model was set up to closely resemble the in-vivo conditions. Inter-vertebra rotations were measured by post processor of Adams and compared with the intact values. SROMs of the flexion, extension, lateral bending, and axial rotation of human virtual models were measured, where three spinal fixation systems such as rigid system, Dynesys system, and fused system were installed. As a result, the value of SROM is decreased in flexion-extension and lateral bending when the spinal fixation system is implanted. The movement of Dynesys system is similar to that of intact model by allowing the movement of lumbar. This means that the Dynesys system is proved to be safe and effective in the treatment of unstable spinal condition.