To improve the light environment and welfare of the turtle cultured indoors,the effects of lighting mode on growth performance,cortisol level,and oxidative stress of juvenile Chinese three-keeled pond turtle,Chinemys ...To improve the light environment and welfare of the turtle cultured indoors,the effects of lighting mode on growth performance,cortisol level,and oxidative stress of juvenile Chinese three-keeled pond turtle,Chinemys reevesii,were investigated in this study.The experimental turtles with an initial weight of 5.61±0.09 g were reared in tanks under four different lighting modes:three groups with light(lighting the basking area and water area,LBW;lighting the water area only,LW;lighting the basking area only,LB)and control group(no light,NL).The experiment was conducted for more than six months,with each group having three replicates.After 203 d of the experiment,the turtle in the LW group exhibited higher weight gain rate(WGR)and a specific growth rate(SGR,%/d)compared to other treatments.Also,results showed that the final body weight of the turtle exposed to LW was higher than that exposed to other treatments.On the physiological level,serum cortisol level in turtles exposed to LW was significantly lower than that in other treatments.Regarding oxidative stress,the level of catalase(CAT)in turtles exposed to LW and LB was significantly lower than that exposed to LBW and NL.The malonaldehyde(MDA)activity in turtles exposed to LW was significantly lower than other treatments.Based on the growth performance and health status,it is suggested that lighting the water area only is the optimal lighting mode for the juvenile threekeeled pond turtle cultured indoors.展开更多
We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-m...We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-micron size of 0.62μm in width.Specifically,a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode,and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm.This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.展开更多
Objective: This study explored the effects of different light curing modes and ethanol-wet bonding on dentin bonding strength and durability. Methods: A total of 54 molars were randomly divided into three groups: S...Objective: This study explored the effects of different light curing modes and ethanol-wet bonding on dentin bonding strength and durability. Methods: A total of 54 molars were randomly divided into three groups: Single Bond 2, Gluma Comfort Bond, and N-Bond. Based on the three light-curing modes and presence or absence of eth- anol pretreatment, the samples were assigned to six subgroups: high-light mode, ethanol pretreatment+high-light mode, soft-start mode, ethanol pretreatment+soft-start mode, standard mode, and ethanol pretreatment+standard mode. All samples were bonded with resin based on the experimental groups. After 24 h and 6 months of water storage, a universal testing machine was used to measure microtensile bond strength. Scanning electron microscopy (SEM) was applied to observe mixed layer morphology. Results: The 24-h and 6-month microtensile bond strengths of the ethanol pretreatment groups were significantly higher than those of the non-ethanol pretreatment groups at the same light modes (P〈0.05). With or without ethanol pretreatment, the microtensile bond strengths of the high-light modes were significantly lower than those of the soft-start modes and standard modes (P〈0.05). The microtensile bond strengths of samples from the 6-month water storage group significantly decreased compared with those of samples from the 24-h water storage group (P〈0.05). The soft-start groups and standard groups formed better mixed layers than the high-light mode groups, whereas the ethanol pretreatment groups formed more uniform mixed layers than those without ethanol pretreatment. Conclusions: Ethanol-wet bonding technique, soft-start, and standard modes could improve dentin bonding properties.展开更多
This study aimed to determine the effects of spectral light characteristics on the visual response of the western flower thrips,the strengthening mechanism of thrips response behavior regulated by light,and thrips res...This study aimed to determine the effects of spectral light characteristics on the visual response of the western flower thrips,the strengthening mechanism of thrips response behavior regulated by light,and thrips response characteristics to contrast light.Light with combined and single wavelength were tested by using a self-made behavior response device for thrips.Light sources for trapping thrips were made to verify the trapping effect on thrips in a greenhouse,and the reasons for changes in thrips behavior were analyzed to characterize the mechanism of their phototactic response.The results showed that the light mode(single,contrast,combined light)affected the thrips visual response and approach response,whereas in contrast light,the effects were optimal.Combination light inhibited the thrips visual response,and when the illumination increased,the thrips visual response to single and combination light intensified,and the thrips approach sensitivity to green light increased in contrast and combination light.However,the light mode did not affect the thrips visual response and sensitivity to spectral light characteristics.The degree of thrips visual response to yellow light was stronger than that to green light,while the degree of thrips visual response to green light was stronger than that to yellow light,indicating that the photo-induced mechanism of the thrips visual response differed from that of the thrips approach response.Moreover,in the greenhouse,the trapping effect of different light sources on thrips was positively correlated with temperature.The trapping effect of green light was optimal,followed by a yellow light source,while the difference of light intensity(illumination,illumination energy)and its photo-thermal intensity between yellow and green light was the reason for the differences in the degree of visual trends and the trapping effects of thrips.However,the sensitivity of thrips responding to different light depended on the difference in the heterogeneous stimulation intensity of different spectral light.Thus,light brightness and photo-thermal effects were the causes of thrips visual responses,while bio-photoelectric reaction effects caused thrips to produce a visual response and affected the degree of the thrips visual response.The results reveal the underlying causes of pest control by light,and provide a theoretical basis for the research and development of pest induction equipment and light arrangements.展开更多
基金supported by the Key Program of Science and Technology of Zhejiang Province(Grant No.2023 C02050)the Open Fund of Zhejiang Institute of Freshwater Fisheries(Grant No.ZJK201905)+2 种基金the Technology Program of Department of Agriculture and Rural of Zhejiang Province,China(Grant No.2020XTTGSC01)the Rural Revitalization Project of Huzhou(No.2021ZD2039)the Fundamental Research Funds for the Central Universities(Grant No.2019QNA6005).
文摘To improve the light environment and welfare of the turtle cultured indoors,the effects of lighting mode on growth performance,cortisol level,and oxidative stress of juvenile Chinese three-keeled pond turtle,Chinemys reevesii,were investigated in this study.The experimental turtles with an initial weight of 5.61±0.09 g were reared in tanks under four different lighting modes:three groups with light(lighting the basking area and water area,LBW;lighting the water area only,LW;lighting the basking area only,LB)and control group(no light,NL).The experiment was conducted for more than six months,with each group having three replicates.After 203 d of the experiment,the turtle in the LW group exhibited higher weight gain rate(WGR)and a specific growth rate(SGR,%/d)compared to other treatments.Also,results showed that the final body weight of the turtle exposed to LW was higher than that exposed to other treatments.On the physiological level,serum cortisol level in turtles exposed to LW was significantly lower than that in other treatments.Regarding oxidative stress,the level of catalase(CAT)in turtles exposed to LW and LB was significantly lower than that exposed to LBW and NL.The malonaldehyde(MDA)activity in turtles exposed to LW was significantly lower than other treatments.Based on the growth performance and health status,it is suggested that lighting the water area only is the optimal lighting mode for the juvenile threekeeled pond turtle cultured indoors.
基金This work was supported by the National Key R&D Program of China(No.2021YFB2800500)National Natural Science Foundation of China(Nos.U20A20211,51902286,61775192,61905215,51772270,62105297,and 61905093)+1 种基金Zhejiang Provincial Natural Science Foundation(No.LQ22F050022)State Key Laboratory of High Field Laser Physics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,and Fundamental Research Funds for the Central Universities.
文摘We report on a conceptually new type of waveguide in glass by femtosecond laser direct writing,namely,photonic latticelike waveguide(PLLW).The PLLWfs core consists of well-distributed and densified tracks with a sub-micron size of 0.62μm in width.Specifically,a PLLW inscribed as hexagonal-shape input with a ring-shape output side was implemented to converse Gaussian mode to doughnut-like mode,and high conversion efficiency was obtained with a low insertion loss of 1.65 dB at 976 nm.This work provides a new freedom for design and fabrication of the refractive index profile of waveguides with sub-micron resolution and broadens the functionalities and application scenarios of femtosecond laser direct-writing waveguides in future 3D integrated photonic systems.
基金Project supported by the Science and Technology Research Project of the Education Department of Jilin Province of China(No.(2015)527)
文摘Objective: This study explored the effects of different light curing modes and ethanol-wet bonding on dentin bonding strength and durability. Methods: A total of 54 molars were randomly divided into three groups: Single Bond 2, Gluma Comfort Bond, and N-Bond. Based on the three light-curing modes and presence or absence of eth- anol pretreatment, the samples were assigned to six subgroups: high-light mode, ethanol pretreatment+high-light mode, soft-start mode, ethanol pretreatment+soft-start mode, standard mode, and ethanol pretreatment+standard mode. All samples were bonded with resin based on the experimental groups. After 24 h and 6 months of water storage, a universal testing machine was used to measure microtensile bond strength. Scanning electron microscopy (SEM) was applied to observe mixed layer morphology. Results: The 24-h and 6-month microtensile bond strengths of the ethanol pretreatment groups were significantly higher than those of the non-ethanol pretreatment groups at the same light modes (P〈0.05). With or without ethanol pretreatment, the microtensile bond strengths of the high-light modes were significantly lower than those of the soft-start modes and standard modes (P〈0.05). The microtensile bond strengths of samples from the 6-month water storage group significantly decreased compared with those of samples from the 24-h water storage group (P〈0.05). The soft-start groups and standard groups formed better mixed layers than the high-light mode groups, whereas the ethanol pretreatment groups formed more uniform mixed layers than those without ethanol pretreatment. Conclusions: Ethanol-wet bonding technique, soft-start, and standard modes could improve dentin bonding properties.
基金The authors acknowledge that this work was financial supported by the Scientific and technological project in Henan Province(Grant No.212102110139)the China Agricultural Research System(Grant No.CARS-03).
文摘This study aimed to determine the effects of spectral light characteristics on the visual response of the western flower thrips,the strengthening mechanism of thrips response behavior regulated by light,and thrips response characteristics to contrast light.Light with combined and single wavelength were tested by using a self-made behavior response device for thrips.Light sources for trapping thrips were made to verify the trapping effect on thrips in a greenhouse,and the reasons for changes in thrips behavior were analyzed to characterize the mechanism of their phototactic response.The results showed that the light mode(single,contrast,combined light)affected the thrips visual response and approach response,whereas in contrast light,the effects were optimal.Combination light inhibited the thrips visual response,and when the illumination increased,the thrips visual response to single and combination light intensified,and the thrips approach sensitivity to green light increased in contrast and combination light.However,the light mode did not affect the thrips visual response and sensitivity to spectral light characteristics.The degree of thrips visual response to yellow light was stronger than that to green light,while the degree of thrips visual response to green light was stronger than that to yellow light,indicating that the photo-induced mechanism of the thrips visual response differed from that of the thrips approach response.Moreover,in the greenhouse,the trapping effect of different light sources on thrips was positively correlated with temperature.The trapping effect of green light was optimal,followed by a yellow light source,while the difference of light intensity(illumination,illumination energy)and its photo-thermal intensity between yellow and green light was the reason for the differences in the degree of visual trends and the trapping effects of thrips.However,the sensitivity of thrips responding to different light depended on the difference in the heterogeneous stimulation intensity of different spectral light.Thus,light brightness and photo-thermal effects were the causes of thrips visual responses,while bio-photoelectric reaction effects caused thrips to produce a visual response and affected the degree of the thrips visual response.The results reveal the underlying causes of pest control by light,and provide a theoretical basis for the research and development of pest induction equipment and light arrangements.