As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary ...As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.展开更多
Since ancient times,lightning disasters have undoubtedly been an unstoppable threat to humanity.During thunderstorms,lightning often damages objects on the ground,such as buildings and structures.Since Franklin invent...Since ancient times,lightning disasters have undoubtedly been an unstoppable threat to humanity.During thunderstorms,lightning often damages objects on the ground,such as buildings and structures.Since Franklin invented the lightning rod in 1752,lightning rods have been used worldwide to prevent direct lightning strikes in various fields such as high-voltage power transmission lines,outdoor chemical sites,highways,land and sea wind farms,and forest lightning fire protection.It has been proven that lightning accidents still occur frequently in places where lightning rods are installed and the protective angle method is used.In order to further study the protective effect of lightning rods and identify the shortcomings of lightning rod protection,negative lightning strikes are taken as the research object,to analyze the limitations of lightning rods in preventing direct lightning strikes from the working principle of lightning rods.展开更多
When the tower overhead is struck by the lightning impulse, the lightning current flows into the earth through the impedance of tower and the grounding resistance, which heightens potential of the tower overhead and p...When the tower overhead is struck by the lightning impulse, the lightning current flows into the earth through the impedance of tower and the grounding resistance, which heightens potential of the tower overhead and possibly induces insulator flashover. Lighting rod arrester is used to shield the tower and provide another routine for lightning current, decreasing the potential of tower overhead. In this paper, the performance of a 500 kV lighting rod arrester is tested used in AC transmission system under the current impulse. Besides, the influence of the lightning rod arrester performance on the top potential of tower is also studied. The results show that, when the rod arrester is connected to the tower, the top potential of tower can be obviously limited under the lightning strike.展开更多
A non-local solution for a functionally graded piezoelectric nano-rod is pre- sented by accounting the surface effect. This solution is used to evaluate the charac- teristics of the wave propagation in the rod structu...A non-local solution for a functionally graded piezoelectric nano-rod is pre- sented by accounting the surface effect. This solution is used to evaluate the charac- teristics of the wave propagation in the rod structure. The model is loaded under a two-dimensional (2D) electric potential and an initially applied voltage at the top of the rod. The mechanical and electrical properties are assumed to be variable along the thick- ness direction of the rod according to the power law. The Hamilton principle is used to derive the governing differential equations of the electromechanical system. The effects of some important parameters such as the applied voltage and gradation of the material properties on the wave characteristics of the rod are studied.展开更多
Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods...Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.展开更多
In addition to the conventional Franklin Rod,many non-conventional air terminals are being used as lightning protection devices.As cited in previous works,these non-conventional devices emit space charge in the vicini...In addition to the conventional Franklin Rod,many non-conventional air terminals are being used as lightning protection devices.As cited in previous works,these non-conventional devices emit space charge in the vicinity of the terminals during the process of lightning stroke.A number of factors affect the performance of these lightning protection devices,among them are geometry and dimension of the devices,location of the device above the ground,height of the cloud above the ground,and polarity of the lightning stroke.The performance of these lightning protection devices has been a topic of discussion by researchers for many years.Some studies focused on the magnitude of emission current from these devices as a criterion to evaluate their performances.The critical flashover voltage(CFO)between the devices and a metal screen simulating cloud can also be used as another criterion to evaluate the performance of the devices.Laboratory measurements were conducted in controlled conditions on different types of lightning protection devices to compare their performance.Four different types of devices were used in the present study:Franklin Rod,TerraStat models TS 100,TS 400,and Spline Ball Ionizer.The study focused on the CFO voltage of the air gap between devices and the metal screen.The CFO voltage was evaluated using standard switching and lightning impulses.The measurements were recorded for positive as well as negative polarity.The air gap between the devices and metal screen was selected at 2 m and 3 m.The results obtained provide a better understanding of the electrical performance of lightning protection devices.展开更多
The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition...The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition of direct and indirect current. The arc characteristics and stabilities of effective Fe powder welding rods containing RE were analyzed by HANNOVER analyzer. The efficiency of Fe powder welding rods was tested by weighting method. It was found that the stability of Fe powder welding rods was improved when it was added with rare earths. The results of impact experiment at low temperatures and SEM analysis on impact break showed that the grain was refined, the welding joint was cleaned, and the mechanical properties of joint was enhanced with proper RE content. It was provided with good processing property for this effective RE-Fe powder welding rod, and its efficiency could arrive at 180%.展开更多
An accurate determination of lightning protection zone is an important issue in the analysis and design of an appropri-ate lightning protection system. This paper presents a fast and accurate protection zone determina...An accurate determination of lightning protection zone is an important issue in the analysis and design of an appropri-ate lightning protection system. This paper presents a fast and accurate protection zone determination methodology for metallic lightning rod. The methodology is based on Quasi Monte Carlo Integration technique applied to Method of Moments (MoM) solution of Integral Equations. As an example, solution of the integral equation for unknown charge distribution on lightning rod is obtained. The electric field in the region surrounding the rod is then computed and the protection zone plotted accordingly. The effect of the thickness of the rod on the protection zone is also studied.展开更多
This article presents a mathematical model for simulating the mechanical behaviour of lightning strikes and analysing the resulting damage to the soil.This article focuses on the electro-thermal effect and seepage cau...This article presents a mathematical model for simulating the mechanical behaviour of lightning strikes and analysing the resulting damage to the soil.This article focuses on the electro-thermal effect and seepage caused by lightning strikes in particular.Then,a numerical model based on the conservation laws of momentum,mass and energy is developed for soil subjected to lightning strikes.Comparisons to field observations and theoretical calculations are used to demonstrate the efficacy and accuracy of numerical simulations.The findings demonstrate that lightning strikes can cause soils to experience both seepage force and heat stress.Under the calculative condition of this article:by increasing the intrinsic permeability of the soil,k_(p)(≥10^(-10)m^(2)),the seepage force can be effectively reduced,hence reducing the risk of lightning strikes;improving the electrical conductivity of the soil β(≥10^(-1) S/m^(2))and lowering its thermal expansion coefficient(≤10^(-6)K^(-1))can greatly reduce the damage caused by lightning strikes to the soil.The preceding investigations demonstrate that the suggested model is capable of evaluating mechanical damage caused by lightning in the soil,and the findings contribute to a better understanding of soil mechanical response to lightning strikes.展开更多
The latest research shows that the ions generated by the corona discharge of lightning rod have dual functions of attracting and shielding lightning discharge. After the lightning rod is installed at a certain height ...The latest research shows that the ions generated by the corona discharge of lightning rod have dual functions of attracting and shielding lightning discharge. After the lightning rod is installed at a certain height on the ground,the lightning rod tip reaches the corona threshold to ionize the surrounding air and generate positive and negative ions under the action of the electric field at the end of the lightning downward leader. Constrained by Coulomb’s Law,its positive ions( opposite charges attract each other) form an upward leader( streamer),which moves towards the end of the lightning downward leader and is connected to the downward leader,establishing a discharge channel to attract lightning to the needle tip and discharge the current to the ground,and playing a role in attracting lightning. Its negative ions are repelled by the electric field at the end of the lightning downward leader( repelled by isotropic charges) and influenced by the wind,and diffuse in the downwind area to form an ion cloud,inhibiting the growth of corona at the tip of ground objects,and playing a role in shielding lightning. In this paper,Franklin’s understanding of the role of lightning rod and Yang Shaojie’s new definition of the working principle of lightning rod are briefly introduced. The formation mechanism,distribution characteristics,shielding effect,and impact on lightning strike point distribution of ion clouds are analyzed. Additionally,the important role of shielding effects of ion clouds in regional lightning protection is introduced,which provides a theoretical basis for the correct understanding and use of lightning rod.展开更多
The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are ...The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every n piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.展开更多
The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)o...The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)of Jiangsu Province in China is estimated.The results show that the rough irregular terrain results in the rapid magnitude attenuation and the increase of the rise-time of the field waveform.For example,for the Yangzhou DF site as the circumference of a radius of 45 km,the root-mean-squared height(RMSH)of the real irregular terrain varies from 7 to 33 m;the extra field attenuation relative to the ideal ground surface ranges from 1%to 11%,and the extra rise-time increment varies from 0.1 to 0.6μs.Therefore,the extracted current peak of lightning return stroke may be underestimated from the remotely measured electromagnetic field,and the error varies along with different azimuths.展开更多
Objective To investigatewhether antioxidants inhibit adhesion of leukocytes to endothelium and furthermore, whether all antioxidants regulate NF-KB activation through a redox sensitive mechanism. Methods The effect of...Objective To investigatewhether antioxidants inhibit adhesion of leukocytes to endothelium and furthermore, whether all antioxidants regulate NF-KB activation through a redox sensitive mechanism. Methods The effect of the antioxidative substances pyrrolidin dithiocarbamat (PDTC), dichloroisocumarin (DCI), chrysin and probucol on the endothelial leukocyte adhesion were examined under near physiological flow conditions. The antioxidative activity of antioxidants was measured in a DCF fluorescence assay with flow cytometry. The activation of NF-kB in endothelial cells was investigated in a gel shift assay. Results PDTC and probucol did not show an inhibitory effect to the formation of intracellular H2O2 in TNFa activated human vascular endothelial cells (HUVEC) . Chrysin showed a moderate effect. DCI showed a strong antioxidative effect. In contrast, PDTC and chrysin inhibited the adhesion of HL 60 cells to TNFa-stimulated HUVEC. DCI and probucol did not have influence on the adhesion within the area of the examined shear stresses. Only PDTC inhibited the TNFa-induced activation of NF-KB in endothelial cells. Conclusion The inhibition of the endothelial leukocyte adhesion by antioxidative substances is not to be explained by its antioxidative characteristics only. The inhibitory effect of PDTC on NF-KB activation was probably not related to its antioxidative properties. Endothelial cell Antioxidants NF-kappa-B展开更多
基金supported by State Grid Ningxia Electric Power Co.,Ltd.under Grant 5229CG220006Natural Science Foundation of Ningxia Province under Grant 2022AAC03629.
文摘As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.
基金Supported by Lightning Multi-pulse Intelligent Monitoring System Optimization Technology Project of Guangdong Yuedian Dianbai Hot Water Wind Farm(SFC/DBW-Z-FW-23-006).
文摘Since ancient times,lightning disasters have undoubtedly been an unstoppable threat to humanity.During thunderstorms,lightning often damages objects on the ground,such as buildings and structures.Since Franklin invented the lightning rod in 1752,lightning rods have been used worldwide to prevent direct lightning strikes in various fields such as high-voltage power transmission lines,outdoor chemical sites,highways,land and sea wind farms,and forest lightning fire protection.It has been proven that lightning accidents still occur frequently in places where lightning rods are installed and the protective angle method is used.In order to further study the protective effect of lightning rods and identify the shortcomings of lightning rod protection,negative lightning strikes are taken as the research object,to analyze the limitations of lightning rods in preventing direct lightning strikes from the working principle of lightning rods.
文摘When the tower overhead is struck by the lightning impulse, the lightning current flows into the earth through the impedance of tower and the grounding resistance, which heightens potential of the tower overhead and possibly induces insulator flashover. Lighting rod arrester is used to shield the tower and provide another routine for lightning current, decreasing the potential of tower overhead. In this paper, the performance of a 500 kV lighting rod arrester is tested used in AC transmission system under the current impulse. Besides, the influence of the lightning rod arrester performance on the top potential of tower is also studied. The results show that, when the rod arrester is connected to the tower, the top potential of tower can be obviously limited under the lightning strike.
基金supported by the University of Kashan(No.463865/13)the Iranian Nanotechnology Development Committee
文摘A non-local solution for a functionally graded piezoelectric nano-rod is pre- sented by accounting the surface effect. This solution is used to evaluate the charac- teristics of the wave propagation in the rod structure. The model is loaded under a two-dimensional (2D) electric potential and an initially applied voltage at the top of the rod. The mechanical and electrical properties are assumed to be variable along the thick- ness direction of the rod according to the power law. The Hamilton principle is used to derive the governing differential equations of the electromechanical system. The effects of some important parameters such as the applied voltage and gradation of the material properties on the wave characteristics of the rod are studied.
基金supported by National Natural Science Foundation of China (21876168, 21507130)Youth Innovation Promotion Association of CAS (2019376)the Chongqing Science & Technology Commission (cstc2016jcyjA0070, cstckjcxljrc13)~~
文摘Thermally stable Zr4+, Al3+, and Si4+ cations were incorporated into the lattice of CeO2 nano‐rods (i.e., CeO2‐NR) in order to improve the specific surface area. The undoped and Zr4+, Al3+, and Si4+ doped nano‐rods were used as supports to prepare MnOx/CeO2‐NR, MnOx/CZ‐NR, MnOx/CA‐NR, and MnOx/CS‐NR catalysts, respectively. The prepared supports and catalysts were comprehensively characterized by transmission electron microscopy (TEM), high‐resolution TEM, X‐ray diffraction, Raman and N2‐physisorption analyses, hydrogen temperature‐programmed reduction, ammonia temperature‐programmed desorption, in situ diffuse reflectance infrared Fourier‐transform spectroscopic analysis of the NH3 adsorption, and X‐ray photoelectron spectroscopy. Moreover, the catalytic performance and H2O+SO2 tolerance of these samples were evaluated through NH3‐selective catalytic reduction (NH3‐SCR) in the absence or presence of H2O and SO2. The obtained results show that the MnOx/CS‐NR catalyst exhibits the highest NOx conversion and the lowest N2O concentration, which result from the largest number of oxygen vacancies and acid sites, the highest Mn4+ content, and the lowest redox ability. The MnOx/CS‐NR catalyst also presents excellent resistance to H2O and SO2. All of these phenomena suggest that Si4+ is the optimal dopant for the MnOx/CeO2‐NR catalyst.
文摘In addition to the conventional Franklin Rod,many non-conventional air terminals are being used as lightning protection devices.As cited in previous works,these non-conventional devices emit space charge in the vicinity of the terminals during the process of lightning stroke.A number of factors affect the performance of these lightning protection devices,among them are geometry and dimension of the devices,location of the device above the ground,height of the cloud above the ground,and polarity of the lightning stroke.The performance of these lightning protection devices has been a topic of discussion by researchers for many years.Some studies focused on the magnitude of emission current from these devices as a criterion to evaluate their performances.The critical flashover voltage(CFO)between the devices and a metal screen simulating cloud can also be used as another criterion to evaluate the performance of the devices.Laboratory measurements were conducted in controlled conditions on different types of lightning protection devices to compare their performance.Four different types of devices were used in the present study:Franklin Rod,TerraStat models TS 100,TS 400,and Spline Ball Ionizer.The study focused on the CFO voltage of the air gap between devices and the metal screen.The CFO voltage was evaluated using standard switching and lightning impulses.The measurements were recorded for positive as well as negative polarity.The air gap between the devices and metal screen was selected at 2 m and 3 m.The results obtained provide a better understanding of the electrical performance of lightning protection devices.
文摘The optimum coating composition of alkali Fe powder welding rods was designed by orthogonal experiment with mix rates. A new kind of effective RE-Fe powder welding rod was prepared which could be used at the condition of direct and indirect current. The arc characteristics and stabilities of effective Fe powder welding rods containing RE were analyzed by HANNOVER analyzer. The efficiency of Fe powder welding rods was tested by weighting method. It was found that the stability of Fe powder welding rods was improved when it was added with rare earths. The results of impact experiment at low temperatures and SEM analysis on impact break showed that the grain was refined, the welding joint was cleaned, and the mechanical properties of joint was enhanced with proper RE content. It was provided with good processing property for this effective RE-Fe powder welding rod, and its efficiency could arrive at 180%.
文摘An accurate determination of lightning protection zone is an important issue in the analysis and design of an appropri-ate lightning protection system. This paper presents a fast and accurate protection zone determination methodology for metallic lightning rod. The methodology is based on Quasi Monte Carlo Integration technique applied to Method of Moments (MoM) solution of Integral Equations. As an example, solution of the integral equation for unknown charge distribution on lightning rod is obtained. The electric field in the region surrounding the rod is then computed and the protection zone plotted accordingly. The effect of the thickness of the rod on the protection zone is also studied.
基金funded by the Natural Science Foundation of China(Grant No.42077435)。
文摘This article presents a mathematical model for simulating the mechanical behaviour of lightning strikes and analysing the resulting damage to the soil.This article focuses on the electro-thermal effect and seepage caused by lightning strikes in particular.Then,a numerical model based on the conservation laws of momentum,mass and energy is developed for soil subjected to lightning strikes.Comparisons to field observations and theoretical calculations are used to demonstrate the efficacy and accuracy of numerical simulations.The findings demonstrate that lightning strikes can cause soils to experience both seepage force and heat stress.Under the calculative condition of this article:by increasing the intrinsic permeability of the soil,k_(p)(≥10^(-10)m^(2)),the seepage force can be effectively reduced,hence reducing the risk of lightning strikes;improving the electrical conductivity of the soil β(≥10^(-1) S/m^(2))and lowering its thermal expansion coefficient(≤10^(-6)K^(-1))can greatly reduce the damage caused by lightning strikes to the soil.The preceding investigations demonstrate that the suggested model is capable of evaluating mechanical damage caused by lightning in the soil,and the findings contribute to a better understanding of soil mechanical response to lightning strikes.
基金Supported by Technology Research and Development Project of Strong Electromagnetic Pulse Protection (Lightning) of Sea Wind Field in Guangdong Yuedian Zhuhai Biqing Bay (YJW-PK23010)。
文摘The latest research shows that the ions generated by the corona discharge of lightning rod have dual functions of attracting and shielding lightning discharge. After the lightning rod is installed at a certain height on the ground,the lightning rod tip reaches the corona threshold to ionize the surrounding air and generate positive and negative ions under the action of the electric field at the end of the lightning downward leader. Constrained by Coulomb’s Law,its positive ions( opposite charges attract each other) form an upward leader( streamer),which moves towards the end of the lightning downward leader and is connected to the downward leader,establishing a discharge channel to attract lightning to the needle tip and discharge the current to the ground,and playing a role in attracting lightning. Its negative ions are repelled by the electric field at the end of the lightning downward leader( repelled by isotropic charges) and influenced by the wind,and diffuse in the downwind area to form an ion cloud,inhibiting the growth of corona at the tip of ground objects,and playing a role in shielding lightning. In this paper,Franklin’s understanding of the role of lightning rod and Yang Shaojie’s new definition of the working principle of lightning rod are briefly introduced. The formation mechanism,distribution characteristics,shielding effect,and impact on lightning strike point distribution of ion clouds are analyzed. Additionally,the important role of shielding effects of ion clouds in regional lightning protection is introduced,which provides a theoretical basis for the correct understanding and use of lightning rod.
基金Supported by the National Natural Science Foundation of China under Grant No 11274121
文摘The longitudinal wave propagating in one-dimensional periodic piezoelectric composite rod with inter-coupling between different piezoelectric segments is investigated. The analytical formulae for such a structure are shown and the dispersion relation is calculated. The results show that, by introducing the inter-coupling between the different piezoelectric segments, which is accomplished by serially connecting every n piezoelectric segment into supercells, some tunable Bragg band gaps can accordingly be opened in the low frequency region. The investigation could provide a new guideline for the tunable phononic crystal under passive control.
基金Supported by the Application of the Forecasting Warning System for Lightning Disaster in Yunan Plateau(YNKJXM20190733)National Natural Science Foundation of China(41775006,41575004).
文摘The propagation of the lightning-radiated electromagnetic field along the real irregular terrain around Yangzhou Direction Finder(DF)site(119°42′E,32°39′N)and Nanjing DF site(118°46′E,32°03′N)of Jiangsu Province in China is estimated.The results show that the rough irregular terrain results in the rapid magnitude attenuation and the increase of the rise-time of the field waveform.For example,for the Yangzhou DF site as the circumference of a radius of 45 km,the root-mean-squared height(RMSH)of the real irregular terrain varies from 7 to 33 m;the extra field attenuation relative to the ideal ground surface ranges from 1%to 11%,and the extra rise-time increment varies from 0.1 to 0.6μs.Therefore,the extracted current peak of lightning return stroke may be underestimated from the remotely measured electromagnetic field,and the error varies along with different azimuths.
文摘Objective To investigatewhether antioxidants inhibit adhesion of leukocytes to endothelium and furthermore, whether all antioxidants regulate NF-KB activation through a redox sensitive mechanism. Methods The effect of the antioxidative substances pyrrolidin dithiocarbamat (PDTC), dichloroisocumarin (DCI), chrysin and probucol on the endothelial leukocyte adhesion were examined under near physiological flow conditions. The antioxidative activity of antioxidants was measured in a DCF fluorescence assay with flow cytometry. The activation of NF-kB in endothelial cells was investigated in a gel shift assay. Results PDTC and probucol did not show an inhibitory effect to the formation of intracellular H2O2 in TNFa activated human vascular endothelial cells (HUVEC) . Chrysin showed a moderate effect. DCI showed a strong antioxidative effect. In contrast, PDTC and chrysin inhibited the adhesion of HL 60 cells to TNFa-stimulated HUVEC. DCI and probucol did not have influence on the adhesion within the area of the examined shear stresses. Only PDTC inhibited the TNFa-induced activation of NF-KB in endothelial cells. Conclusion The inhibition of the endothelial leukocyte adhesion by antioxidative substances is not to be explained by its antioxidative characteristics only. The inhibitory effect of PDTC on NF-KB activation was probably not related to its antioxidative properties. Endothelial cell Antioxidants NF-kappa-B