Background: The potential for acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter digestibility (DMD) by cattle o...Background: The potential for acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter digestibility (DMD) by cattle offered bermudagrass [Cynodon doctylon (L) Pers.] hays of different qualities was evaluated. Eight ruminally cannulated cows (594 ± 35.5 kg) were allocated randomly to 4 hay diets: low (L), medium low (ML), medium high (MH), and high (H) crude protein (CP) concentration (79, 111,131, and 164 g CP/kg on a DM basis, respectively). Diets were offered in 3 periods with 2 diet replicates per period and were rotated across cows between periods. Cows were individually fed 20 g DM/kg of body weight in equal feedings at 08:00 and 16:00 h for a 10-d adaptation followed by a 5-d total fecal collection. Actual DM intake (DMI), DMD, and FO were determined based on hay offered, ort, and feces excreted. These components were then analyzed for ADL, APL, and ADIA concentration to determine marker recovery and marker-based estimates of FO and DMD. Results: Forage DMI was affected by diet (P = 0.02), and DMI from MH and H was greater (P 〈 0.05) than from L. Apparent DMD tended (P = 0.08) to differ among diets while FO (P = 0.20) was not affected by diet treatments. Average ADL recovery (1.16) was greater (P 〈 0.05) than that of ADIA (1.03) and APL (1.06), but ADIA and APL did not differ (P = 0.42). Estimates of FO and DMD derived using APL and ADIA were not different (P≥0.05) from total fecal collection while those using ADL differed (P 〈 0.05). There was no diet by marker interaction (P≥ 0.22) for either FO or DMD. Conclusion: Acid-detergent insoluble ash and APL accurately predicted FO and DMD of cattle fed bermudagrass hay of varying nutrient composition. These internal markers may facilitate studies involving large numbers of animals and forages. Results from such studies may be used to develop improved equations to predict energy values of forages based on the relationship of dietary components to digestibility across a wide range of forages.展开更多
为明确木质素纤维在循环流化床粉煤灰基地聚物(circulating fluidized bed fly ash based geopolymer,CFBG)中的强韧化机理,文章通过添加偏高岭土和少量的电石渣,借助电子式万能材料试验机、X射线衍射仪、场发射扫描电子显微镜、能谱仪...为明确木质素纤维在循环流化床粉煤灰基地聚物(circulating fluidized bed fly ash based geopolymer,CFBG)中的强韧化机理,文章通过添加偏高岭土和少量的电石渣,借助电子式万能材料试验机、X射线衍射仪、场发射扫描电子显微镜、能谱仪、红外光谱、工业CT及分子模拟,对不同木质素纤维掺量(质量分数分别为0、0.1%、0.2%、0.3%、0.4%、0.5%)的地聚物进行力学特性、结构及微观形貌测试,分析不同木质素纤维掺量对CFBG强韧化机理的影响。结果表明:当木质素纤维掺量为0.3%时,CFBG抗折强度和断裂韧性达到最大值,分别为18.6 MPa、9.6 MPa·m^(1/2);随着木质素纤维掺量增加,地聚物抗压强度和断裂韧性呈上升趋势;掺入木质素纤维可促进地聚物中莫来石晶相、类沸石晶相及C-S-H凝胶的生成,显著改变地聚物的结构;木质素纤维的掺入可降低地聚物表面孔隙,改变地聚物破坏形式,延长裂缝的扩展路径。研究结果可为促进工业固废高附加值资源化利用提供理论依据。展开更多
An indoor and a grazing experiment was conducted to determine how estimated feed intake and digestion by grazing goats consuming concentrate, bahaigrass pasture, and mimosa browse changed with body weight (BW), level ...An indoor and a grazing experiment was conducted to determine how estimated feed intake and digestion by grazing goats consuming concentrate, bahaigrass pasture, and mimosa browse changed with body weight (BW), level of supplementation, and forage chemical composition. Twenty four Boer wether goats were assigned in a completely randomized design with repeated measures on the following 3 treatments: concentrate, mimosa browse, and bahiagrass pasture. Internal markers used to estimate both dry matter (DM) digestibility (DMD) and DM intake (DMI) included acid detergent lignin (ADL) and acid insoluble ash (AIA). Marker-derived estimates of DMD and DMI were compared with DMD measured by total fecal collection or directly measured by in vivo feed intake rate. Both ADL and AIA-based markers in mimosa and bahiagrass diets were similar from those derived by in vivo DMD;however, AIA-based marker in concentrate was under-estimated (P in vivo DMD in mimosa and bahiagrass, although AIA concentration in mimosa seemed to be low compared to others. All markers yielded feed intake estimates that differed from those derived by ADL (P in vivo control, with ADL (P in vivo intake methods for digestibility studies. Both ADL and AIA occur in common forages at readily measurable levels and laboratory procedures are not difficult or time consuming. Therefore, both ADL and AIA have possible use in digestibility studies where other methods may not be applicable.展开更多
基金supported by University of Arkansas Division of Agriculture and the Robert S.McNamara Fellowship Program of the World Bank
文摘Background: The potential for acid-detergent insoluble ash (ADIA), alkaline-peroxide lignin (APL), and acid-detergent lignin (ADL) to predict fecal output (FO) and dry matter digestibility (DMD) by cattle offered bermudagrass [Cynodon doctylon (L) Pers.] hays of different qualities was evaluated. Eight ruminally cannulated cows (594 ± 35.5 kg) were allocated randomly to 4 hay diets: low (L), medium low (ML), medium high (MH), and high (H) crude protein (CP) concentration (79, 111,131, and 164 g CP/kg on a DM basis, respectively). Diets were offered in 3 periods with 2 diet replicates per period and were rotated across cows between periods. Cows were individually fed 20 g DM/kg of body weight in equal feedings at 08:00 and 16:00 h for a 10-d adaptation followed by a 5-d total fecal collection. Actual DM intake (DMI), DMD, and FO were determined based on hay offered, ort, and feces excreted. These components were then analyzed for ADL, APL, and ADIA concentration to determine marker recovery and marker-based estimates of FO and DMD. Results: Forage DMI was affected by diet (P = 0.02), and DMI from MH and H was greater (P 〈 0.05) than from L. Apparent DMD tended (P = 0.08) to differ among diets while FO (P = 0.20) was not affected by diet treatments. Average ADL recovery (1.16) was greater (P 〈 0.05) than that of ADIA (1.03) and APL (1.06), but ADIA and APL did not differ (P = 0.42). Estimates of FO and DMD derived using APL and ADIA were not different (P≥0.05) from total fecal collection while those using ADL differed (P 〈 0.05). There was no diet by marker interaction (P≥ 0.22) for either FO or DMD. Conclusion: Acid-detergent insoluble ash and APL accurately predicted FO and DMD of cattle fed bermudagrass hay of varying nutrient composition. These internal markers may facilitate studies involving large numbers of animals and forages. Results from such studies may be used to develop improved equations to predict energy values of forages based on the relationship of dietary components to digestibility across a wide range of forages.
文摘为明确木质素纤维在循环流化床粉煤灰基地聚物(circulating fluidized bed fly ash based geopolymer,CFBG)中的强韧化机理,文章通过添加偏高岭土和少量的电石渣,借助电子式万能材料试验机、X射线衍射仪、场发射扫描电子显微镜、能谱仪、红外光谱、工业CT及分子模拟,对不同木质素纤维掺量(质量分数分别为0、0.1%、0.2%、0.3%、0.4%、0.5%)的地聚物进行力学特性、结构及微观形貌测试,分析不同木质素纤维掺量对CFBG强韧化机理的影响。结果表明:当木质素纤维掺量为0.3%时,CFBG抗折强度和断裂韧性达到最大值,分别为18.6 MPa、9.6 MPa·m^(1/2);随着木质素纤维掺量增加,地聚物抗压强度和断裂韧性呈上升趋势;掺入木质素纤维可促进地聚物中莫来石晶相、类沸石晶相及C-S-H凝胶的生成,显著改变地聚物的结构;木质素纤维的掺入可降低地聚物表面孔隙,改变地聚物破坏形式,延长裂缝的扩展路径。研究结果可为促进工业固废高附加值资源化利用提供理论依据。
文摘An indoor and a grazing experiment was conducted to determine how estimated feed intake and digestion by grazing goats consuming concentrate, bahaigrass pasture, and mimosa browse changed with body weight (BW), level of supplementation, and forage chemical composition. Twenty four Boer wether goats were assigned in a completely randomized design with repeated measures on the following 3 treatments: concentrate, mimosa browse, and bahiagrass pasture. Internal markers used to estimate both dry matter (DM) digestibility (DMD) and DM intake (DMI) included acid detergent lignin (ADL) and acid insoluble ash (AIA). Marker-derived estimates of DMD and DMI were compared with DMD measured by total fecal collection or directly measured by in vivo feed intake rate. Both ADL and AIA-based markers in mimosa and bahiagrass diets were similar from those derived by in vivo DMD;however, AIA-based marker in concentrate was under-estimated (P in vivo DMD in mimosa and bahiagrass, although AIA concentration in mimosa seemed to be low compared to others. All markers yielded feed intake estimates that differed from those derived by ADL (P in vivo control, with ADL (P in vivo intake methods for digestibility studies. Both ADL and AIA occur in common forages at readily measurable levels and laboratory procedures are not difficult or time consuming. Therefore, both ADL and AIA have possible use in digestibility studies where other methods may not be applicable.