The combustion characteristics of NaOH treated and untreated Xilihaote lignite was investigated by thermogravimetric analysis.The relationship between physico-chemical properties,including the ash content,oxygen-conta...The combustion characteristics of NaOH treated and untreated Xilihaote lignite was investigated by thermogravimetric analysis.The relationship between physico-chemical properties,including the ash content,oxygen-containing functional groups,mean pore diameter and specific surface area and combustion performance,was also studied in this paper.Combustion kinetic parameters were calculated through Coasts Redfern Method.The results show that ignition of treated samples takes place at higher temperature compared to raw lignite,and peak temperature also occurs at higher temperature.The maximum combustion rate of the sample,which was treated by 0.01 mol/L NaOH lignite,was the biggest.Reaction orders of 0.6,2.0,and 0.8 were found to be effective mechanism for definite three temperature regions.Average activation energies of these three temperature regions of XLHTR,XLHT0.01,XLHT0.50 and XLTH1.00 are 19.17,23.87,10.77,and 10.93 kJ/mol,respectively.Treatment of lignite with NaOH can reduce the reactivity of lignite at proper concentration.展开更多
The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combi...The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified.展开更多
基金the National Basic Research Program of China (No.2012CB214901)the National Natural Science Foundation of China (No.51274197)the Fundamental Research Funds for the Central Universities (No.2010LKHX07) for the financial support
文摘The combustion characteristics of NaOH treated and untreated Xilihaote lignite was investigated by thermogravimetric analysis.The relationship between physico-chemical properties,including the ash content,oxygen-containing functional groups,mean pore diameter and specific surface area and combustion performance,was also studied in this paper.Combustion kinetic parameters were calculated through Coasts Redfern Method.The results show that ignition of treated samples takes place at higher temperature compared to raw lignite,and peak temperature also occurs at higher temperature.The maximum combustion rate of the sample,which was treated by 0.01 mol/L NaOH lignite,was the biggest.Reaction orders of 0.6,2.0,and 0.8 were found to be effective mechanism for definite three temperature regions.Average activation energies of these three temperature regions of XLHTR,XLHT0.01,XLHT0.50 and XLTH1.00 are 19.17,23.87,10.77,and 10.93 kJ/mol,respectively.Treatment of lignite with NaOH can reduce the reactivity of lignite at proper concentration.
基金Supported by the Fundamental Research Funds for the Central Universities(2017XKQY066)
文摘The aim of this paper is to analyze the change in the active structure of lignite during the process of lowtemperature oxidation by constructing a molecular structure model for lignite. Using quantum computation combined with experimental results of proximate analysis, ultimate analysis, Fourier transform infrared spectroscopy(FTIR) and X-ray photoelectron spectroscopy(XPS), a structural model for the large molecular structure was constructed. By analyzing the bond lengths in the model molecule, the evolution law for the active structure of lignite was predicted for the process of low-temperature oxidation. In low-temperature oxidation,alkanes and hydroxyls are the primary active structures observed in lignite, though ether may also react. These active functional groups react with oxygen to release heat, thereby speeding up the reaction between coal and oxygen. Finally, the content of various functional groups in the process of lignite low-temperature oxidation was analyzed by infrared analysis, and the accuracy of the model was verified.