The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate volta...The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate voltage-dependent synaptic plasticity.By adjusting the amplitude of the applied voltage,we were able to reproduce short-term plasticity(STP)and the transition from STP to long-term potentiation.The stimulation with high intensity induced long-term enhancement of conductance without any decay process,thus representing a permanent memory behavior.Moreover,the image Boolean operations(including intersection,subtraction,and union)were also demonstrated in the memristive synapse array based on the above voltage-dependent plasticity.The experimental achievements of this study provide a new insight into the successful mimicry of essential characteristics of synaptic behaviors.展开更多
For the data processing of the Rapid Prototyping Manufacturing, Boolean operation can offer a versatile tool for editing or modifying the STL model, adding the artificial construction, and creating the complex assista...For the data processing of the Rapid Prototyping Manufacturing, Boolean operation can offer a versatile tool for editing or modifying the STL model, adding the artificial construction, and creating the complex assistant support structure to meet the special technical requests. The topological structure of STL models was built firstly in order to obtain the neighborhood relationship among the triangular facets. The intersection test between every edge of one solid and every facet of another solid was taken to get the intersection points. According to the matching relationship of the triangle index recorded in the data structure of the intersection points, the intersection segments array and the intersection loop were traced out. Each intersected triangle was subdivided by the Constrained Delaunay Triangulations. The intersected surfaces were divided into several surface patches along the intersection loops. The inclusion prediction between the surface patch and the other solid was taken by testing whether the candidate point was inside or outside the solid region of the slice. Detecting the loops for determination of the valid intersection lines greatly increases the efficiency and the reliability of the process.展开更多
Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Conseq...Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.展开更多
To enhance the ability of current modeling system, an uniformed representation is designed to represent wire frame, solid, surface models. We present an algorithm for Boolean operation between the models under this r...To enhance the ability of current modeling system, an uniformed representation is designed to represent wire frame, solid, surface models. We present an algorithm for Boolean operation between the models under this representation. Accuracy, efficiency and robustness are the main consideration. The geometric information is represented with trimmed parametric patches and trimmed parametric splines. The topological information is represented with an extended half edge data structure. In the process of intersection calculation, hierarchy intersection method is applied for unified classification. Tracing the intersection curve to overcome degenerate cases that occur frequently in practice. The algorithm has been implemented as the modeling kernel of a feature based modeling system named GS CAD98, which was developed on Windows/NT platform.展开更多
A polyhedral solid modeler that operates on boundary representations (B-reps) of ob- jects must derive topological information from numerical data.Due to finite precision of the com- puter,unavoidable numerical calcul...A polyhedral solid modeler that operates on boundary representations (B-reps) of ob- jects must derive topological information from numerical data.Due to finite precision of the com- puter,unavoidable numerical calculation errors may result in ambiguous or contradictory decision of topology.These effects cause existing polyhedral modelers to fail when confronted with objects that nearly align or barely intersect. Based on analysing the reasons which cause the failure of Boolean operation to fail,this paper describes an algorithm using solid integrity to carefully design each step of Boolean operation,so that valid polyhedral modeling results may be achieved.展开更多
In this paper, with the help of modulus of smoothness ω2r(f,t), we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator B n and obtain direct and inverse theorems when ...In this paper, with the help of modulus of smoothness ω2r(f,t), we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator B n and obtain direct and inverse theorems when 1-1/r ≤λ≤ 1, r ∈N.展开更多
Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel...Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel and unified technique is proposed in this paper for computing single and iterated set operations efficiently, robustly and exactly. An adaptive octree is combined with a nested constructive solid geometry (CSG) tree by this technique. The intersection handling is restricted to the cells in the octree where intersection actually occurs. Within those cells, a CSG tree template is instanced by the surfaces and the tree is converted to planebased binary space partitioning (BSP) for set evaluation; Moreover, the surface classification is restricted to the ceils in the octree where the surfaces only come from a model and are within the bounding-boxes of other polyhedrons. These two ways bring about the efficiency and scalability of the operations, in terms of runtime and memory. As all surfaces in such a cell have the same classification relation, they are classified as a whole. Robustness and exactness are achieved by integrating plane-based geometry representation with adaptive geometry predicate technique in intersection handling, and by applying divide-and-conquer arithmetic on surface classification. Experimental results demonstrate that the proposed approach can guarantee the robustness of Boolean computations and runs faster than other existing approaches.展开更多
This paper presents a new method of Boolean operation First, a linesegment-polygonclassification theorem is proposed. Then, according to this theorem and basic idea for Booleanoperation, we give the discussion and app...This paper presents a new method of Boolean operation First, a linesegment-polygonclassification theorem is proposed. Then, according to this theorem and basic idea for Booleanoperation, we give the discussion and apposition of the new method. At last, a typical applicationis given.展开更多
Let S be an antinegative commutative semiring without zero divisors and Mn(S) be the semiring of all n × n matrices over S. For a linear operator L on Mn(S), we say that L strongly preserves nilpotent matrice...Let S be an antinegative commutative semiring without zero divisors and Mn(S) be the semiring of all n × n matrices over S. For a linear operator L on Mn(S), we say that L strongly preserves nilpotent matrices in Mn(S) if for any A ∈ Mn(S), A is nilpotent if and only if L(A) is nilpotent. In this paper, the linear operators that strongly preserve nilpotent matrices over S are characterized.展开更多
The Alienor method has been elaborated at the beginning of the 1980s by Yves Cherruault and Arthur Guillez (1983). The following people have also greatly contributed to the improvement of this new optimization method:...The Alienor method has been elaborated at the beginning of the 1980s by Yves Cherruault and Arthur Guillez (1983). The following people have also greatly contributed to the improvement of this new optimization method: Blaise Somé, Gaspar Mora, Balira Konfé, Jean Claude Mazza and Esther Claudine Bityé Mvondo. The basic idea consists in using a reducing transformation allowing us to simplify a multivariable optimization problem to a new optimization problem according to a single variable. The rational gestion of enterprises leads generally to the use of Operational Research, often called management science. The term Operational Research means a scientific approach to decision making, that seeks optimization in a system. Consequently, it is better to take the right decisions. Otherwise, fatal consequences can occur instantaneously [1]. Generally, we have to maximize the global profit margin, taking into account some constraints. For instance, in an integer programming problem, some or all the variables are required to be nonnegative integers. In this paper, we present new reducing transformations for global optimization in integer, binary and mixed variables as well as the applications in Boolean algebra by solving a Boolean Equation of 21 variables. The applications in Operational Research are presented on various examples, resolved by using the tabulator Excel of Microsoft.展开更多
基金the fund from Ministry of Science and Technology of China(Nos.2018YFE0118300 and 2019YFB2205100)the NSFC Program(Nos.11974072,51701037,51732003,51872043,51902048,61774031,61574031 and U19A2091)+4 种基金the“111”Project(No.B13013)the fund from Ministry of Education of China(No.6141A02033414)The fund from China Postdoctoral Science Foundation(No.2019M661185)The Fundamental Research Funds for the Central Universities(No.2412019QD015)the Fund from Jilin Province(JJKH20201163KJ).
文摘The development of electronic devices that possess the functionality of biological synapses is a crucial step towards neuromorphic computing.In this work,we present a WOx-based memristive device that can emulate voltage-dependent synaptic plasticity.By adjusting the amplitude of the applied voltage,we were able to reproduce short-term plasticity(STP)and the transition from STP to long-term potentiation.The stimulation with high intensity induced long-term enhancement of conductance without any decay process,thus representing a permanent memory behavior.Moreover,the image Boolean operations(including intersection,subtraction,and union)were also demonstrated in the memristive synapse array based on the above voltage-dependent plasticity.The experimental achievements of this study provide a new insight into the successful mimicry of essential characteristics of synaptic behaviors.
基金Sponsored by the National High-Technology Research and Development Program of China(Grant No2002AA6Z3083)
文摘For the data processing of the Rapid Prototyping Manufacturing, Boolean operation can offer a versatile tool for editing or modifying the STL model, adding the artificial construction, and creating the complex assistant support structure to meet the special technical requests. The topological structure of STL models was built firstly in order to obtain the neighborhood relationship among the triangular facets. The intersection test between every edge of one solid and every facet of another solid was taken to get the intersection points. According to the matching relationship of the triangle index recorded in the data structure of the intersection points, the intersection segments array and the intersection loop were traced out. Each intersected triangle was subdivided by the Constrained Delaunay Triangulations. The intersected surfaces were divided into several surface patches along the intersection loops. The inclusion prediction between the surface patch and the other solid was taken by testing whether the candidate point was inside or outside the solid region of the slice. Detecting the loops for determination of the valid intersection lines greatly increases the efficiency and the reliability of the process.
基金supported by the National Natural Science Foundation of China(U21B2074,52105070).
文摘Discrete event system(DES)models promote system engineering,including system design,verification,and assessment.The advancement in manufacturing technology has endowed us to fabricate complex industrial systems.Consequently,the adoption of advanced modeling methodologies adept at handling complexity and scalability is imperative.Moreover,industrial systems are no longer quiescent,thus the intelligent operations of the systems should be dynamically specified in the model.In this paper,the composition of the subsystem behaviors is studied to generate the complexity and scalability of the global system model,and a Boolean semantic specifying algorithm is proposed for generating dynamic intelligent operations in the model.In traditional modeling approaches,the change or addition of specifications always necessitates the complete resubmission of the system model,a resource-consuming and error-prone process.Compared with traditional approaches,our approach has three remarkable advantages:(i)an established Boolean semantic can be fitful for all kinds of systems;(ii)there is no need to resubmit the system model whenever there is a change or addition of the operations;(iii)multiple specifying tasks can be easily achieved by continuously adding a new semantic.Thus,this general modeling approach has wide potential for future complex and intelligent industrial systems.
文摘To enhance the ability of current modeling system, an uniformed representation is designed to represent wire frame, solid, surface models. We present an algorithm for Boolean operation between the models under this representation. Accuracy, efficiency and robustness are the main consideration. The geometric information is represented with trimmed parametric patches and trimmed parametric splines. The topological information is represented with an extended half edge data structure. In the process of intersection calculation, hierarchy intersection method is applied for unified classification. Tracing the intersection curve to overcome degenerate cases that occur frequently in practice. The algorithm has been implemented as the modeling kernel of a feature based modeling system named GS CAD98, which was developed on Windows/NT platform.
文摘A polyhedral solid modeler that operates on boundary representations (B-reps) of ob- jects must derive topological information from numerical data.Due to finite precision of the com- puter,unavoidable numerical calculation errors may result in ambiguous or contradictory decision of topology.These effects cause existing polyhedral modelers to fail when confronted with objects that nearly align or barely intersect. Based on analysing the reasons which cause the failure of Boolean operation to fail,this paper describes an algorithm using solid integrity to carefully design each step of Boolean operation,so that valid polyhedral modeling results may be achieved.
文摘In this paper, with the help of modulus of smoothness ω2r(f,t), we discuss the pointwise approximation properties for the iterated Boolean sums of Bernstein operator B n and obtain direct and inverse theorems when 1-1/r ≤λ≤ 1, r ∈N.
基金supported by the Natural Science Foundation of China under Grant No.61202154 and No.61133009the National Basic Research Project of China under Grant No.2011CB302203+2 种基金Shanghai Pujiang Program under Grant No.13PJ1404500the Science and Technology Commission of Shanghai Municipality Program under Grant No.13511505000the Open Project Program of the State Key Lab of CAD&CG of Zhejiang University under Grant No.A1401
文摘Regularized Boolean operations have been widely used in 3D modeling systems. However, evaluating Boolean operations may be quite numerically unstable and time consuming, especially for iterated set operations. A novel and unified technique is proposed in this paper for computing single and iterated set operations efficiently, robustly and exactly. An adaptive octree is combined with a nested constructive solid geometry (CSG) tree by this technique. The intersection handling is restricted to the cells in the octree where intersection actually occurs. Within those cells, a CSG tree template is instanced by the surfaces and the tree is converted to planebased binary space partitioning (BSP) for set evaluation; Moreover, the surface classification is restricted to the ceils in the octree where the surfaces only come from a model and are within the bounding-boxes of other polyhedrons. These two ways bring about the efficiency and scalability of the operations, in terms of runtime and memory. As all surfaces in such a cell have the same classification relation, they are classified as a whole. Robustness and exactness are achieved by integrating plane-based geometry representation with adaptive geometry predicate technique in intersection handling, and by applying divide-and-conquer arithmetic on surface classification. Experimental results demonstrate that the proposed approach can guarantee the robustness of Boolean computations and runs faster than other existing approaches.
文摘This paper presents a new method of Boolean operation First, a linesegment-polygonclassification theorem is proposed. Then, according to this theorem and basic idea for Booleanoperation, we give the discussion and apposition of the new method. At last, a typical applicationis given.
文摘Let S be an antinegative commutative semiring without zero divisors and Mn(S) be the semiring of all n × n matrices over S. For a linear operator L on Mn(S), we say that L strongly preserves nilpotent matrices in Mn(S) if for any A ∈ Mn(S), A is nilpotent if and only if L(A) is nilpotent. In this paper, the linear operators that strongly preserve nilpotent matrices over S are characterized.
文摘The Alienor method has been elaborated at the beginning of the 1980s by Yves Cherruault and Arthur Guillez (1983). The following people have also greatly contributed to the improvement of this new optimization method: Blaise Somé, Gaspar Mora, Balira Konfé, Jean Claude Mazza and Esther Claudine Bityé Mvondo. The basic idea consists in using a reducing transformation allowing us to simplify a multivariable optimization problem to a new optimization problem according to a single variable. The rational gestion of enterprises leads generally to the use of Operational Research, often called management science. The term Operational Research means a scientific approach to decision making, that seeks optimization in a system. Consequently, it is better to take the right decisions. Otherwise, fatal consequences can occur instantaneously [1]. Generally, we have to maximize the global profit margin, taking into account some constraints. For instance, in an integer programming problem, some or all the variables are required to be nonnegative integers. In this paper, we present new reducing transformations for global optimization in integer, binary and mixed variables as well as the applications in Boolean algebra by solving a Boolean Equation of 21 variables. The applications in Operational Research are presented on various examples, resolved by using the tabulator Excel of Microsoft.