In this paper, we obtain the joint empirical likelihood confidence regions for a finite number of quantiles under strong mixing samples. As an application of this result, the empirical likelihood confidence intervals ...In this paper, we obtain the joint empirical likelihood confidence regions for a finite number of quantiles under strong mixing samples. As an application of this result, the empirical likelihood confidence intervals for the difference of any two quantiles are also obtained.展开更多
In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio s...In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio statistic and obtain its limiting distribution. And then, via simulation studies we give coverage probabilities for the parameters of interest. The results show that the empirical likelihood method performs very well.展开更多
Consider a distribution with several parameters whose exact values are unknown and need to be estimated using the maximum-likelihood technique. Under a regular case of estimation, it is fairly routine to construct a c...Consider a distribution with several parameters whose exact values are unknown and need to be estimated using the maximum-likelihood technique. Under a regular case of estimation, it is fairly routine to construct a confidence region for all such parameters, based on the natural logarithm of the corresponding likelihood function. In this article, we investigate the case of doing this for only some of these parameters, assuming that the remaining (so called nuisance) parameters are of no interest to us. This is to be done at a chosen level of confidence, maintaining the usual accuracy of this procedure (resulting in about 1% error for samples of size , and further decreasing with 1/n). We provide a general solution to this problem, demonstrating it by many explicit examples.展开更多
基金Supported by the National Natural Science Foundation of China(11271088,11361011,11201088)the Natural Science Foundation of Guangxi(2013GXNSFAA019004,2013GXNSFAA019007,2013GXNSFBA019001)
文摘In this paper, we obtain the joint empirical likelihood confidence regions for a finite number of quantiles under strong mixing samples. As an application of this result, the empirical likelihood confidence intervals for the difference of any two quantiles are also obtained.
基金Supported by National Natural Science Foundation of China(11731015,11571051,J1310022,11501241)Natural Science Foundation of Jilin Province(20150520053JH,20170101057JC,20180101216JC)+2 种基金Program for Changbaishan Scholars of Jilin Province(2015010)Science and Technology Program of Jilin Educational Department during the "13th Five-Year" Plan Period(2016-399)Science and Technology Research Program of Education Department in Jilin Province for the 13th Five-Year Plan(2016213)
文摘In this paper, we not only construct the confidence region for parameters in a mixed integer-valued autoregressive process using the empirical likelihood method, but also establish the empirical log-likelihood ratio statistic and obtain its limiting distribution. And then, via simulation studies we give coverage probabilities for the parameters of interest. The results show that the empirical likelihood method performs very well.
文摘Consider a distribution with several parameters whose exact values are unknown and need to be estimated using the maximum-likelihood technique. Under a regular case of estimation, it is fairly routine to construct a confidence region for all such parameters, based on the natural logarithm of the corresponding likelihood function. In this article, we investigate the case of doing this for only some of these parameters, assuming that the remaining (so called nuisance) parameters are of no interest to us. This is to be done at a chosen level of confidence, maintaining the usual accuracy of this procedure (resulting in about 1% error for samples of size , and further decreasing with 1/n). We provide a general solution to this problem, demonstrating it by many explicit examples.