We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping paramet...We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping parameter. Then we show that the global solution converges to that of the Schr¨odinger maps in the natural space as the Gilbert damping term vanishes. The proof is based on some studies on the derivative Ginzburg-Landau equations.展开更多
基金supported by Australian Research Council Discovery Project (Grant No. DP170101060)National Natural Science Foundation of China (Grant No. 11201498)the China Scholarship Council (Grant No. 201606495010)
文摘We prove that in dimensions three and higher the Landau-Lifshitz-Gilbert equation with small initial data in the critical Besov space is globally well-posed in a uniform way with respect to the Gilbert damping parameter. Then we show that the global solution converges to that of the Schr¨odinger maps in the natural space as the Gilbert damping term vanishes. The proof is based on some studies on the derivative Ginzburg-Landau equations.