In this work,the microstructure,hydrogen storage properties,anti-oxide ability and rate limiting step of Zr(Cr_(1−x)Co_(x))_(2)(x=0,0.2,0.4 and 0.6)alloys have been investigated.After studying the crystal structure,we...In this work,the microstructure,hydrogen storage properties,anti-oxide ability and rate limiting step of Zr(Cr_(1−x)Co_(x))_(2)(x=0,0.2,0.4 and 0.6)alloys have been investigated.After studying the crystal structure,we found that all alloy samples could show C14-type phase but the alloy sample x=0 could also show a small amount of Cr phase.Rietveld fitting showed that lattice parameter and unit cell volume of C14-type phase decreased with increasing x.After further research,it was clear that the first hydrogen absorption capacity decreased with increasing x.But introducing more Co content had a positive influence on the effective hydrogen storage capacity and cyclic hydrogen absorption and desorption properties of the alloy sample.We also found that adding Co to ZrCr_(2)alloy could improve its anti-oxide ability.In addition to this,the rate limiting step model was also studied.展开更多
Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge tradi...Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.展开更多
The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in Ch...The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.展开更多
基金supported by Natural Science Foundation of Jiangxi Province(20202BABL214003)Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation(JXMS202008 and JXMS202009)+4 种基金Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices(PMND201902)Engineering Research Center of Nuclear Technology Application(East China University of Technology)Ministry of Education(HJSJYB2019–5)Science and Technology Project Founded by Education Department of Jiangxi Province(GJJ190406)Research Foundation for Advanced Talents of East China University of Technology(DHBK2019091).
文摘In this work,the microstructure,hydrogen storage properties,anti-oxide ability and rate limiting step of Zr(Cr_(1−x)Co_(x))_(2)(x=0,0.2,0.4 and 0.6)alloys have been investigated.After studying the crystal structure,we found that all alloy samples could show C14-type phase but the alloy sample x=0 could also show a small amount of Cr phase.Rietveld fitting showed that lattice parameter and unit cell volume of C14-type phase decreased with increasing x.After further research,it was clear that the first hydrogen absorption capacity decreased with increasing x.But introducing more Co content had a positive influence on the effective hydrogen storage capacity and cyclic hydrogen absorption and desorption properties of the alloy sample.We also found that adding Co to ZrCr_(2)alloy could improve its anti-oxide ability.In addition to this,the rate limiting step model was also studied.
基金supported by the National Natural Science Foundation of China(Grants No.41330632,41628202,and 11572112)
文摘Management of groundwater resources and remediation of groundwater pollution require reliable quantification of contaminant dynamics in natural aquifers, which can involve complex chemical dynamics and challenge traditional modeling approaches. The kinetics of chemical reactions in groundwater are well known to be controlled by medium heterogeneity and reactant mixing, motivating the development of particle-based Lagrangian approaches. Previous Lagrangian solvers have been limited to fundamental bimolecular reactions in typically one-dimensional porous media. In contrast to other existing studies, this study developed a fully Lagrangian framework, which was used to simulate diffusion-controlled, multi-step reactions in one-, two-, and three-dimensional porous media. The interaction radius of a reactant molecule, which controls the probability of reaction, was derived by the agent-based approach for both irreversible and reversible reactions. A flexible particle tracking scheme was then developed to build trajectories for particles undergoing mixing-limited, multi-step reactions. The simulated particle dynamics were checked against the kinetics for diffusion-controlled reactions and thermodynamic wellmixed reactions in one-and two-dimensional domains. Applicability of the novel simulator was further tested by(1) simulating precipitation of calcium carbonate minerals in a two-dimensional medium, and(2) quantifying multi-step chemical reactions observed in the laboratory. The flexibility of the Lagrangian simulator allows further refinement to capture complex transport affecting chemical mixing and hence reactions.
基金Supported by the National Natural Science Foundation of China (40318002)
文摘The finite element limit analysis method has the advantages of both numerical and traditional limit equilibrium techniques and it is particularly useful to geotechnical engineering.This method has been developed in China,following well-accepted international procedures,to enhance understanding of stability issues in a number of geotechnical settings.Great advancements have been made in basic theory,the improvement of computational precision,and the broadening of practical applications.This paper presents the results of research on(1) the efficient design of embedded anti-slide piles,(2) the stability analysis of reservoir slopes with strength reduction theory,and(3) the determination of the ultimate bearing capacity of foundations using step-loading FEM(overloading).These three applications are evidence of the design improvements and benefits made possible in geotechnical engineering by finite element modeling.