The impact of process induced variation on the response of SOI Fin FET to heavy ion irradiation is studied through 3-D TCAD simulation for the first time. When Fin FET biased at OFF state configuration(Vgs D0, Vds DV...The impact of process induced variation on the response of SOI Fin FET to heavy ion irradiation is studied through 3-D TCAD simulation for the first time. When Fin FET biased at OFF state configuration(Vgs D0, Vds DVdd/ is struck by a heavy ion, the drain collects ionizing charges under the electric field and a current pulse(single event transient, SET) is consequently formed. The results reveal that with the presence of line-edge roughness(LER), which is one of the major variation sources in nano-scale Fin FETs, the device-to-device variation in terms of SET is observed. In this study, three types of LER are considered: type A has symmetric fin edges, type B has irrelevant fin edges and type C has parallel fin edges. The results show that type A devices have the largest SET variation while type C devices have the smallest variation. Further, the impact of the two main LER parameters,correlation length and root mean square amplitude, on SET variation is discussed as well. The results indicate that variation may be a concern in radiation effects with the down scaling of feature size.展开更多
分析了现有线边缘粗糙度(L ine Edge Roughness,LER)表征参数的不足,针对二维LER的表征参数信息量缺失,提出了基于子波中面的LER参数表征.子波理论给LER的综合评定提供了恰当的工具.利用子波在空间和频率域内都具有的定位特性,可以在任...分析了现有线边缘粗糙度(L ine Edge Roughness,LER)表征参数的不足,针对二维LER的表征参数信息量缺失,提出了基于子波中面的LER参数表征.子波理论给LER的综合评定提供了恰当的工具.利用子波在空间和频率域内都具有的定位特性,可以在任意细节上分析信号特征,且构造的子波基准线不存在拟合误差,可以分析LER来源,改进刻线边缘加工工艺.给出了基于子波分析的几个LER评定参数,并分析了这些参数如何应用于工艺和元件电气性能的表征.展开更多
Although several years delayed than its initial plan, extreme UV lithography (EUVL) with 13.5nm wavelength has been finally implemented into high volume manufacture (HVM) of mainstream semiconductor industry since 201...Although several years delayed than its initial plan, extreme UV lithography (EUVL) with 13.5nm wavelength has been finally implemented into high volume manufacture (HVM) of mainstream semiconductor industry since 2018. With the delivery and installation of ASML EUV scanners in those giant Fab players like Samsung, TSMC and Intel, EUV lithography is becoming a sort of industry standard exposure metrology for those critical layers of advanced technology nodes beyond 7nm. Although ASML NXE EUVL scanner is the only commercialized EUV exposure system available on the market, its development is the concentration of all essence from worldwide industrial and academic collaboration. It is becoming more and more important not only for fab runners but also for main stream fabless design houses to understand and participate the progress of EUVL. In this review, working principles, module structures and technical challenges have been briefly discussed regarding each EUV subsystem, including light source, reflection mirrors and system, reticle module as well as photoresist development. EUV specific issues of light intensity, defectivity within reflection system, line edge roughness (LER) and mask 3D effects have been focused respectively and promising solutions have been summarized as well.展开更多
文摘The impact of process induced variation on the response of SOI Fin FET to heavy ion irradiation is studied through 3-D TCAD simulation for the first time. When Fin FET biased at OFF state configuration(Vgs D0, Vds DVdd/ is struck by a heavy ion, the drain collects ionizing charges under the electric field and a current pulse(single event transient, SET) is consequently formed. The results reveal that with the presence of line-edge roughness(LER), which is one of the major variation sources in nano-scale Fin FETs, the device-to-device variation in terms of SET is observed. In this study, three types of LER are considered: type A has symmetric fin edges, type B has irrelevant fin edges and type C has parallel fin edges. The results show that type A devices have the largest SET variation while type C devices have the smallest variation. Further, the impact of the two main LER parameters,correlation length and root mean square amplitude, on SET variation is discussed as well. The results indicate that variation may be a concern in radiation effects with the down scaling of feature size.
文摘分析了现有线边缘粗糙度(L ine Edge Roughness,LER)表征参数的不足,针对二维LER的表征参数信息量缺失,提出了基于子波中面的LER参数表征.子波理论给LER的综合评定提供了恰当的工具.利用子波在空间和频率域内都具有的定位特性,可以在任意细节上分析信号特征,且构造的子波基准线不存在拟合误差,可以分析LER来源,改进刻线边缘加工工艺.给出了基于子波分析的几个LER评定参数,并分析了这些参数如何应用于工艺和元件电气性能的表征.
文摘Although several years delayed than its initial plan, extreme UV lithography (EUVL) with 13.5nm wavelength has been finally implemented into high volume manufacture (HVM) of mainstream semiconductor industry since 2018. With the delivery and installation of ASML EUV scanners in those giant Fab players like Samsung, TSMC and Intel, EUV lithography is becoming a sort of industry standard exposure metrology for those critical layers of advanced technology nodes beyond 7nm. Although ASML NXE EUVL scanner is the only commercialized EUV exposure system available on the market, its development is the concentration of all essence from worldwide industrial and academic collaboration. It is becoming more and more important not only for fab runners but also for main stream fabless design houses to understand and participate the progress of EUVL. In this review, working principles, module structures and technical challenges have been briefly discussed regarding each EUV subsystem, including light source, reflection mirrors and system, reticle module as well as photoresist development. EUV specific issues of light intensity, defectivity within reflection system, line edge roughness (LER) and mask 3D effects have been focused respectively and promising solutions have been summarized as well.