Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating e...Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating energy reflection/transmittion coefficients of quasi-pressure and quasi-shear waves. Line defects are created by the re- placement of PE or PM constituent layer. The defect modes existing in the first gap are considered and the influences on defect modes of the material properties and volume fraction of the defect layers, the type of incident waves, the location of defect layer and the number of structural layers are discussed in detail. Numerical results indicate that defect modes are the most obvious when the defect layers are inserted in the middle of the perfect PCs; the types of incidence wave and material properties of the defect layers have important effects on the numbers, the location of frequencies and the peaks of defect modes, and the defect modes are strongly de- pendent on volume fraction of the defect layers. We hope this paper will be found useful for the design of PE/PM acoustic filters or acoustic transducer with PCs structures.展开更多
We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a l...We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a line defect in the lens is introduced along the light transmission direction and the width of the line defect is less than λ/2. However, there appear two focusings when the width of the line defect is more than λ/2. When the line defect is introduced along the direction perpendicular to the transmission, there is always one focusing.展开更多
Miniaturization of efficient thermoelectric(TE)devices has long been hindered by the weak mechanical strength and insufficient heat-to-electricity conversion efficiency of zone-melted(ZM)ingots.Here,we successfully pr...Miniaturization of efficient thermoelectric(TE)devices has long been hindered by the weak mechanical strength and insufficient heat-to-electricity conversion efficiency of zone-melted(ZM)ingots.Here,we successfully prepared a robust high-performance p-type Bi_(0.4)Sb_(1.6)Te_(3.72)bulk alloy by combining an ultrafast thermal explosion reaction with the spark plasma sintering(TER-SPS)process.It is observed that the introduced excess Te not only enhances the(00l)-oriented texture to ensure an outstanding power factor(PF)of 5 mW m^(−1)K^(−2),but also induces extremely high-density line defects of up to 10^(11)–10^(12)cm^(−2).Benefiting from such heavily dense line defects,the enhancement of the electronic thermal conductance from the increased electron mobility is fully compensated by the stronger phonon scattering,leading to an evident net reduction in total thermal conductivity.As a result,a superior ZT value of~1.4 at 350 K is achieved,which is 40%higher than that of commercial ZM ingots.Moreover,owing to the strengthening of grain refinement and highdensity line defects,the mechanical compressive stress reaches up to 94 MPa,which is 154%more than that of commercial single crystals.This research presents an effective strategy for the collaborative optimization of the texture,TE performance,and mechanical strength of Bi2Te3-based materials.As such,the present study contributes significantly to the future commercial development of miniature TE devices.展开更多
Two-dimensional(2D)materials with defects are desired for catalysis after the adsorption of monodispersed noble metal atoms.High-performance catalysts with the absolute value of Gibbs free energy(|△GH|)close to zero,...Two-dimensional(2D)materials with defects are desired for catalysis after the adsorption of monodispersed noble metal atoms.High-performance catalysts with the absolute value of Gibbs free energy(|△GH|)close to zero,is one of the ultimate goals in the catalytic field.Here,we report the formation of monolayer titanium selenide(TiSe2)with line defects.The low-temperature scanning tunneling microscopy/spectroscopy(STM/S)measurements revealed the structure and electronic states of the line defect.Density functional theory(DFT)calculation results confirmed that the line defects were induced by selenium vacancies and the STM simulation was in good agreement with the experimental results.Further,DFT calculations show that monolayer TiSe_(2) with line defects have good catalytic activity for hydrogen evolution reaction(HER).If the defects are decorated with single Pt atom,the HER catalytic activity will be enhanced dramatically(|△GH|=0.006 eV),which is much better than Pt metal(|△GH|=0.09 eV).Line defects in monolayer TiSe_(2)/Au(111)provide a wonderful platform for the design of high-performance catalysts.展开更多
Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as...Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metaUization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.展开更多
We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite...We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite 3D TI, where the front surface and side surface meet with different Fermi velocities, respectively. By using a S-function potential to model the edges, we find that the bound states existed along the step line edge significantly contribute to the LDOS near the edge, but do not modify the exponential behavior away from it. In addition, the power-law decaying behavior for LDOS oscillation away from the step is understood from the spin rotation for surface states scattering off the step defect with magnitude depending on the strength of the potential. Furthermore, the electron refraction and total reflection analogous to optics occurred at the line edge where two surfaces meet with different Fermi velocities, which leads to the LDOS decaying behavior in the greater Fermi velocity side similar to that for a step line edge. However, in the smaller velocity side the LDOS shows a different decaying behavior as x-1/2, and the wavevector of LDOS oscillation is no longer equal to the diameter of the constant energy contour of surface band, but is sensitively dependent on the ratio of the two Fermi velocities. These effects may be verified by STM measurement with high precision.展开更多
Corona discharge is a common phenomenon in power transmission lines external insulation, and it may cause serious defect if without effective detection. The ultraviolet (UV) imagery technology has been widely used to ...Corona discharge is a common phenomenon in power transmission lines external insulation, and it may cause serious defect if without effective detection. The ultraviolet (UV) imagery technology has been widely used to detect the corona discharge in industry in recent years, but some influence factors’ functions are not definite. In this paper, the fracture aluminum strands which is common in power transmission lines were used as the electrode model while a SuperB ultraviolet imager were utilized to detect, the photon count rate was detected with different detect distance, electric field, aluminum strands length and UV gain were applied. Then the multivariate regression analysis (MRA) was taken to calculate the function between the photon count and the factors.展开更多
Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave pr...Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.展开更多
Ru-based superconductor LaRu_(2)As_(2) has been discovered exhibiting the highest critical temperature of ~ 7.8 K among iron-free transition metal pnictides with the ThCr_(2)Si_(2)-type crystal structure. However, mic...Ru-based superconductor LaRu_(2)As_(2) has been discovered exhibiting the highest critical temperature of ~ 7.8 K among iron-free transition metal pnictides with the ThCr_(2)Si_(2)-type crystal structure. However, microscopic research on this novel superconducting material is still lacking. Here, we utilize scanning tunneling microscopy/spectroscopy to uncover the superconductivity and surface structure of LaRu_(2)As_(2). Two distinct terminating surfaces are identified on the cleaved crystals, namely, the As surface and the La surface. Atomic missing line defects are observed on the La surface. Both surfaces exhibit a superconducting gap of ~ 1.0 me V. By employing quasiparticle interference techniques, we observe standing wave patterns near the line defects on the La atomic plane. These patterns are attributed to quasiparticle scattering from two electron type parabolic bands.展开更多
Surface quality has been one of the key factors influencing the ongoing improvement of the quality of steel. Therefore,it is urgent to provide methods for efficient supervision of surface defects. This paper first exp...Surface quality has been one of the key factors influencing the ongoing improvement of the quality of steel. Therefore,it is urgent to provide methods for efficient supervision of surface defects. This paper first expressed the main problems existing in defect management and then focused on constructing a data platform of surface defect management using a multidimensional database. Finally, some onqine applications of the platform at Baosteel were demonstrated. Results show that the constructed multidimensional database provides more structured defect data, and thus it is suitable for swift and multi-angle analysis of the defect data.展开更多
Trace is the important composition structure of printed circuit board,w hich connects the devices,it is also the module that taking up the highest proportion,thus,it is the major testing target of quality assurance. T...Trace is the important composition structure of printed circuit board,w hich connects the devices,it is also the module that taking up the highest proportion,thus,it is the major testing target of quality assurance. The sunken defects proposed in this paper is a w idth abnormity defect on the FPC trace,w hich w ould cause the latent open circuit defect and affect the electrical function of circuit. The problem of flexible deformation and w idth difference make the FPC trace detection harder. Therefore,this paper proposed a detection scheme combined w ith linear masks and circle distribution characteristic. Firstly,this scheme preprocessed the acquired FPC image,divided the trace into several sub-regions and obtained the line w idth values of each trace transverse section. Then the line w idth sequences w ere searched w ith the linear difference template of gray scale. Thus,the sunken defects alternative positions w ere located. Lastly,the circle distribution characteristic is defined to identify the real defect areas from the alternative regions acquired from the previous step. Thus,the detection of sunken defects on the FPC trace w as accomplished.The algorithm w as tested in the self-built image database,w hich show s the better detection performance than the other typical algorithms.展开更多
基金supported by the National Natural Science Foundation of China(11102122)
文摘Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating energy reflection/transmittion coefficients of quasi-pressure and quasi-shear waves. Line defects are created by the re- placement of PE or PM constituent layer. The defect modes existing in the first gap are considered and the influences on defect modes of the material properties and volume fraction of the defect layers, the type of incident waves, the location of defect layer and the number of structural layers are discussed in detail. Numerical results indicate that defect modes are the most obvious when the defect layers are inserted in the middle of the perfect PCs; the types of incidence wave and material properties of the defect layers have important effects on the numbers, the location of frequencies and the peaks of defect modes, and the defect modes are strongly de- pendent on volume fraction of the defect layers. We hope this paper will be found useful for the design of PE/PM acoustic filters or acoustic transducer with PCs structures.
基金Project supported by the National Natural Science Foundation of China (Grant No.10704006)
文摘We investigate in detail the influence of line defects on focusing of electromagnetic waves in a two-dimensional photonic-crystal flat lens. Through simulations, we find that a focusing can always be observed when a line defect in the lens is introduced along the light transmission direction and the width of the line defect is less than λ/2. However, there appear two focusings when the width of the line defect is more than λ/2. When the line defect is introduced along the direction perpendicular to the transmission, there is always one focusing.
基金financially supported by the National Key Research and Development Program of China (2018YFB0703600)the National Natural Science Foundation of China (51772232)+1 种基金the 111 Project of China (B07040)Wuhan Frontier Project on Applied Research Foundation (2019010701011405)
文摘Miniaturization of efficient thermoelectric(TE)devices has long been hindered by the weak mechanical strength and insufficient heat-to-electricity conversion efficiency of zone-melted(ZM)ingots.Here,we successfully prepared a robust high-performance p-type Bi_(0.4)Sb_(1.6)Te_(3.72)bulk alloy by combining an ultrafast thermal explosion reaction with the spark plasma sintering(TER-SPS)process.It is observed that the introduced excess Te not only enhances the(00l)-oriented texture to ensure an outstanding power factor(PF)of 5 mW m^(−1)K^(−2),but also induces extremely high-density line defects of up to 10^(11)–10^(12)cm^(−2).Benefiting from such heavily dense line defects,the enhancement of the electronic thermal conductance from the increased electron mobility is fully compensated by the stronger phonon scattering,leading to an evident net reduction in total thermal conductivity.As a result,a superior ZT value of~1.4 at 350 K is achieved,which is 40%higher than that of commercial ZM ingots.Moreover,owing to the strengthening of grain refinement and highdensity line defects,the mechanical compressive stress reaches up to 94 MPa,which is 154%more than that of commercial single crystals.This research presents an effective strategy for the collaborative optimization of the texture,TE performance,and mechanical strength of Bi2Te3-based materials.As such,the present study contributes significantly to the future commercial development of miniature TE devices.
基金We thank Guangchao Chen for his help.This work was supported by the National Key R&D Program of China(Nos.2019YFA0308500 and 2018YFA0305800)the National Natural Science Foundation of China(Nos.61925111 and 61888102)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB28000000 and XDB30000000)the Fundamental Research Funds for the Central Universities,and CAS Key Laboratory of Vacuum Physics.
文摘Two-dimensional(2D)materials with defects are desired for catalysis after the adsorption of monodispersed noble metal atoms.High-performance catalysts with the absolute value of Gibbs free energy(|△GH|)close to zero,is one of the ultimate goals in the catalytic field.Here,we report the formation of monolayer titanium selenide(TiSe2)with line defects.The low-temperature scanning tunneling microscopy/spectroscopy(STM/S)measurements revealed the structure and electronic states of the line defect.Density functional theory(DFT)calculation results confirmed that the line defects were induced by selenium vacancies and the STM simulation was in good agreement with the experimental results.Further,DFT calculations show that monolayer TiSe_(2) with line defects have good catalytic activity for hydrogen evolution reaction(HER).If the defects are decorated with single Pt atom,the HER catalytic activity will be enhanced dramatically(|△GH|=0.006 eV),which is much better than Pt metal(|△GH|=0.09 eV).Line defects in monolayer TiSe_(2)/Au(111)provide a wonderful platform for the design of high-performance catalysts.
文摘Aluminum metallization using the sprayed coating for exhaust mild steel (MS) pipes of tractors is a standard practice for avoiding rusting. Patches of thin metal coats are prone to rusting and are thus considered as defects in the surface coating. This paper reports a novel configuration of the fiber optic sensor for on-line checking the aluminum metaUization uniformity and hence for defect detection. An optimally chosen high bright 440 nm BLUE LED (light-emitting diode) launches light into a transmitting fiber inclined at the angle of 60° to the surface under inspection placed adequately. The reflected light is transported by a receiving fiber to a blue enhanced photo detector. The metallization thickness on the coated surface results in visually observable variation in the gray shades. The coated pipe is spirally inspected by a combination of linear and rotary motions. The sensor output is the signal conditioned and monitored with RISHUBH DAS. Experimental results show the good repeatability in the defect detection and coating non-uniformity measurement.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274108)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20114306110008)the Hunan Provincial Innovation Foundation for Postgraduates(Grant No.CX2012B204)
文摘We study the local density of states (LDOS) for electrons scattering off the line edge of an atomic step defect on the surface of a three-dimensional (3D) topological insulator (TI) and the line edge of a finite 3D TI, where the front surface and side surface meet with different Fermi velocities, respectively. By using a S-function potential to model the edges, we find that the bound states existed along the step line edge significantly contribute to the LDOS near the edge, but do not modify the exponential behavior away from it. In addition, the power-law decaying behavior for LDOS oscillation away from the step is understood from the spin rotation for surface states scattering off the step defect with magnitude depending on the strength of the potential. Furthermore, the electron refraction and total reflection analogous to optics occurred at the line edge where two surfaces meet with different Fermi velocities, which leads to the LDOS decaying behavior in the greater Fermi velocity side similar to that for a step line edge. However, in the smaller velocity side the LDOS shows a different decaying behavior as x-1/2, and the wavevector of LDOS oscillation is no longer equal to the diameter of the constant energy contour of surface band, but is sensitively dependent on the ratio of the two Fermi velocities. These effects may be verified by STM measurement with high precision.
文摘Corona discharge is a common phenomenon in power transmission lines external insulation, and it may cause serious defect if without effective detection. The ultraviolet (UV) imagery technology has been widely used to detect the corona discharge in industry in recent years, but some influence factors’ functions are not definite. In this paper, the fracture aluminum strands which is common in power transmission lines were used as the electrode model while a SuperB ultraviolet imager were utilized to detect, the photon count rate was detected with different detect distance, electric field, aluminum strands length and UV gain were applied. Then the multivariate regression analysis (MRA) was taken to calculate the function between the photon count and the factors.
基金Supported by National Natural Science Foundation of China(Grant No51605229)Natural Science Foundation of Higher Education Institutions of Jiangsu Province,China(Grant No.16KJB460016)+1 种基金the“333”Project of Jiangsu Province,China(Grant No.BRA2015310)China Postdoctora Science Foundation(Grant No.2016M601844)
文摘Due to the merits of high inspection speed and long detecting distance, Ultrasonic Guided Wave(UGW) method has been commonly applied to the on-line maintenance of power transmission line. However, the guided wave propagation in this structure is very complicated, leading to the unfavorable defect localization accuracy. Aiming at this situation, a high precision UGW technique for inspection of local surface defect in power transmission line is proposed. The technique is realized by adopting a novel segmental piezoelectric ring transducer and transducer mounting scheme, combining with the comprehensive characterization of wave propagation and circumferential defect positioning with multiple piezoelectric elements. Firstly, the propagation path of guided waves in the multi-wires of transmission line under the proposed technique condition is investigated experimentally. Next, the wave velocities are calculated by dispersion curves and experiment test respectively, and from comparing of the two results, the guided wave mode propagated in transmission line is confirmed to be F(1,1) mode. Finally, the axial and circumferential positioning of local defective wires in transmission line are both achieved, by using multiple piezoelectric elements to surround the stands and send elastic waves into every single wire. The proposed research can play a role of guiding the development of highly effective UGW method and detecting system for multi-wire transmission line.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62488201 and 52072401)the National Key R&D Program of China(Grant No.2019YFA0308500)+1 种基金the Chinese Academy of Sciences(Grant No.YSBR-003)the Innovation Program of Quantum Science and Technology(Grant No.2021ZD0302700)。
文摘Ru-based superconductor LaRu_(2)As_(2) has been discovered exhibiting the highest critical temperature of ~ 7.8 K among iron-free transition metal pnictides with the ThCr_(2)Si_(2)-type crystal structure. However, microscopic research on this novel superconducting material is still lacking. Here, we utilize scanning tunneling microscopy/spectroscopy to uncover the superconductivity and surface structure of LaRu_(2)As_(2). Two distinct terminating surfaces are identified on the cleaved crystals, namely, the As surface and the La surface. Atomic missing line defects are observed on the La surface. Both surfaces exhibit a superconducting gap of ~ 1.0 me V. By employing quasiparticle interference techniques, we observe standing wave patterns near the line defects on the La atomic plane. These patterns are attributed to quasiparticle scattering from two electron type parabolic bands.
文摘Surface quality has been one of the key factors influencing the ongoing improvement of the quality of steel. Therefore,it is urgent to provide methods for efficient supervision of surface defects. This paper first expressed the main problems existing in defect management and then focused on constructing a data platform of surface defect management using a multidimensional database. Finally, some onqine applications of the platform at Baosteel were demonstrated. Results show that the constructed multidimensional database provides more structured defect data, and thus it is suitable for swift and multi-angle analysis of the defect data.
文摘Trace is the important composition structure of printed circuit board,w hich connects the devices,it is also the module that taking up the highest proportion,thus,it is the major testing target of quality assurance. The sunken defects proposed in this paper is a w idth abnormity defect on the FPC trace,w hich w ould cause the latent open circuit defect and affect the electrical function of circuit. The problem of flexible deformation and w idth difference make the FPC trace detection harder. Therefore,this paper proposed a detection scheme combined w ith linear masks and circle distribution characteristic. Firstly,this scheme preprocessed the acquired FPC image,divided the trace into several sub-regions and obtained the line w idth values of each trace transverse section. Then the line w idth sequences w ere searched w ith the linear difference template of gray scale. Thus,the sunken defects alternative positions w ere located. Lastly,the circle distribution characteristic is defined to identify the real defect areas from the alternative regions acquired from the previous step. Thus,the detection of sunken defects on the FPC trace w as accomplished.The algorithm w as tested in the self-built image database,w hich show s the better detection performance than the other typical algorithms.