The effect of ground properties with heat conduction between soil and ground loop heat exchangers(GLHEs)has been analyzed.A finite line source model proposed by Cui,Yang,and Fang is used.Far field radius is defined.Th...The effect of ground properties with heat conduction between soil and ground loop heat exchangers(GLHEs)has been analyzed.A finite line source model proposed by Cui,Yang,and Fang is used.Far field radius is defined.The analyses for a 1.5m borehole line source in three kinds of soil conditions:damp and breeze(D.B.),damp and heavy(D.H.),and saturated and heavy(S.H.)are carried out.The results of the comparisons show that in the condition of continuous operation,the variation of the far field radius is related to soil thermal conductivity.The rate of heat transfer will decrease after long time operation.And then soil condition will not influence the far field radius obviously.展开更多
Recent research has revealed that human exposure to air pollutants such as CO, NO_x, and particulates can lead to respiratory diseases, especially among school-age children. Towards understanding such health impacts, ...Recent research has revealed that human exposure to air pollutants such as CO, NO_x, and particulates can lead to respiratory diseases, especially among school-age children. Towards understanding such health impacts, this work estimates local-scale vehicular emissions and concentrations near a highway traffic network, where a school zone is located in. In the case study, VISSIM traffic micro-simulation is used to estimate the source of vehicular emissions at each roadway segment. The local-scale emission sources are then used as inputs to the California line source dispersion model(CALINE4) to estimate concentrations across the study area. To justify the local-scale emissions modeling approach, the simulation experiment is conducted under various traffic conditions. Different meteorological conditions are considered for emission dispersion. The work reveals that emission concentrations are usually higher at locations closer to the congested segments, freeway ramps and major arterial intersections. Compared to the macroscopic estimation(i.e. using network-average emission factors), the results show significantly different emission patterns when the local-scale emission modeling approach is used. In particular, it is found that the macroscopic approach over-estimates emission concentrations at freeways and under-estimations are observed at arterials and local streets. The results of the study can be used to compare to the US environmental protection agency(EPA) standards or any other air quality standard to further identify health risk in a fine-grained manner.展开更多
基金Key Discipline Program of Donghua University,China
文摘The effect of ground properties with heat conduction between soil and ground loop heat exchangers(GLHEs)has been analyzed.A finite line source model proposed by Cui,Yang,and Fang is used.Far field radius is defined.The analyses for a 1.5m borehole line source in three kinds of soil conditions:damp and breeze(D.B.),damp and heavy(D.H.),and saturated and heavy(S.H.)are carried out.The results of the comparisons show that in the condition of continuous operation,the variation of the far field radius is related to soil thermal conductivity.The rate of heat transfer will decrease after long time operation.And then soil condition will not influence the far field radius obviously.
文摘Recent research has revealed that human exposure to air pollutants such as CO, NO_x, and particulates can lead to respiratory diseases, especially among school-age children. Towards understanding such health impacts, this work estimates local-scale vehicular emissions and concentrations near a highway traffic network, where a school zone is located in. In the case study, VISSIM traffic micro-simulation is used to estimate the source of vehicular emissions at each roadway segment. The local-scale emission sources are then used as inputs to the California line source dispersion model(CALINE4) to estimate concentrations across the study area. To justify the local-scale emissions modeling approach, the simulation experiment is conducted under various traffic conditions. Different meteorological conditions are considered for emission dispersion. The work reveals that emission concentrations are usually higher at locations closer to the congested segments, freeway ramps and major arterial intersections. Compared to the macroscopic estimation(i.e. using network-average emission factors), the results show significantly different emission patterns when the local-scale emission modeling approach is used. In particular, it is found that the macroscopic approach over-estimates emission concentrations at freeways and under-estimations are observed at arterials and local streets. The results of the study can be used to compare to the US environmental protection agency(EPA) standards or any other air quality standard to further identify health risk in a fine-grained manner.