The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of...The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.展开更多
In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias es...In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.展开更多
Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given qua...Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.展开更多
Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which ent...Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.展开更多
针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Co...针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Combining Based on Block Linear Minimum Mean Square Error,BLMMSE-MRC)均衡算法。该算法基于水声信道的稀疏性,利用分块线性最小均方误差算法进行预处理,将输出结果作为MRC检测的初始估计值,然后在延迟多普勒空间中估计发射信号的多径分量,并利用MRC进行合并检测。实验结果表明,与已有零填充最大比合并算法(Maximal Ratio Combining Based on Zero Padding,ZP-MRC)和零填充块线性最小均方误差算法(Block Linear Minimum Mean Square Error Based on Zero Padding,ZP-BLMMSE)相比,所提算法能快速收敛,在10-4误码率条件下,信噪比提升了2 dB以上。展开更多
为了降低Turbo均衡中均衡器的复杂度,该文提出了符号方差反馈均衡算法(SVFE)。该算法是对精确的线性最小均方误差估计值(LMMSE)进行Taylor展开得到的。在该算法中,先利用时不变均衡器得到初步符号估计值,再根据先验符号方差对估计值加权...为了降低Turbo均衡中均衡器的复杂度,该文提出了符号方差反馈均衡算法(SVFE)。该算法是对精确的线性最小均方误差估计值(LMMSE)进行Taylor展开得到的。在该算法中,先利用时不变均衡器得到初步符号估计值,再根据先验符号方差对估计值加权,最后进行时不变滤波得到更佳的符号估计值。由于用到了时变的先验符号方差信息,其性能更接近精确的LMMSE均衡器。将所提算法用于Proakis C信道下的Turbo均衡处理,和时不变均衡算法进行仿真对比,所提算法将信噪比损失从0.83 d B降到了0.17 d B,并且仍可通过快速傅里叶变换降低为对数复杂度。展开更多
基金Supported by the National High Technology ResearchDevelopment Program of China (863 Program)(No.2001AA 123014)
文摘The turbo equalization approach is studied for Orthogonal Frequency Division Multiplexing (OFDM) system with combined error control coding and linear precoding. While previous literatures employed linear precodcr of small size for complexity reasons, this paper proposes to use a linear precoder of size larger than or equal to the maximum length of the equivalent discrete-time channel in order to achieve full frequency diversity and reduce complexities of the error control coder/decoder. Also a low complexity Linear Minimum Mean Square Error (LMMSE) turbo equalizer is derived for the receiver. Through simulation and performance analysis, it is shown that the performance of the proposed scheme over frequency selective fading channel reaches the matched filter bound; compared with the same coded OFDM without linear precoding, the proposed scheme shows an Signal-to-Noise Ratio (SNR) improvement of at least 6dB at a bit error rate of 10 6 over a multipath channel with exponential power delay profile. Convergence behavior of the proposed scheme with turbo equalization using various type of linear precoder/transformer, various interleaver size and error control coder of various constraint length is also investigated.
文摘In this paper, we define a new class of biased linear estimators of the vector of unknown parameters in the deficient_rank linear model based on the spectral decomposition expression of the best linear minimun bias estimator. Some important properties are discussed. By appropriate choices of bias parameters, we construct many interested and useful biased linear estimators, which are the extension of ordinary biased linear estimators in the full_rank linear model to the deficient_rank linear model. At last, we give a numerical example in geodetic adjustment.
基金supported by the National Natural Science Foundation of China (60974001)Jiangsu "Six Personnel Peak" Talent-Funded Projects
文摘Receding horizon H∞ control scheme which can deal with both the H∞ disturbance attenuation and mean square stability is proposed for a class of discrete-time Markovian jump linear systems when minimizing a given quadratic performance criteria. First, a control law is established for jump systems based on pontryagin’s minimum principle and it can be constructed through numerical solution of iterative equations. The aim of this control strategy is to obtain an optimal control which can minimize the cost function under the worst disturbance at every sampling time. Due to the difficulty of the assurance of stability, then the above mentioned approach is improved by determining terminal weighting matrix which satisfies cost monotonicity condition. The control move which is calculated by using this type of terminal weighting matrix as boundary condition naturally guarantees the mean square stability of the closed-loop system. A sufficient condition for the existence of the terminal weighting matrix is presented in linear matrix inequality (LMI) form which can be solved efficiently by available software toolbox. Finally, a numerical example is given to illustrate the feasibility and effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(62371225,62371227)。
文摘Linear minimum mean square error(MMSE)detection has been shown to achieve near-optimal performance for massive multiple-input multiple-output(MIMO)systems but inevitably involves complicated matrix inversion,which entails high complexity.To avoid the exact matrix inversion,a considerable number of implicit and explicit approximate matrix inversion based detection methods is proposed.By combining the advantages of both the explicit and the implicit matrix inversion,this paper introduces a new low-complexity signal detection algorithm.Firstly,the relationship between implicit and explicit techniques is analyzed.Then,an enhanced Newton iteration method is introduced to realize an approximate MMSE detection for massive MIMO uplink systems.The proposed improved Newton iteration significantly reduces the complexity of conventional Newton iteration.However,its complexity is still high for higher iterations.Thus,it is applied only for first two iterations.For subsequent iterations,we propose a novel trace iterative method(TIM)based low-complexity algorithm,which has significantly lower complexity than higher Newton iterations.Convergence guarantees of the proposed detector are also provided.Numerical simulations verify that the proposed detector exhibits significant performance enhancement over recently reported iterative detectors and achieves close-to-MMSE performance while retaining the low-complexity advantage for systems with hundreds of antennas.
文摘针对现有的正交时频空(Orthogonal Time Frequency Space,OTFS)调制系统中最大比合并(Maximal Ratio Combining,MRC)均衡算法收敛速度慢、误码率高的问题,提出一种基于水声OTFS系统的分块线性最小均方误差的最大比合并(Maximal Ratio Combining Based on Block Linear Minimum Mean Square Error,BLMMSE-MRC)均衡算法。该算法基于水声信道的稀疏性,利用分块线性最小均方误差算法进行预处理,将输出结果作为MRC检测的初始估计值,然后在延迟多普勒空间中估计发射信号的多径分量,并利用MRC进行合并检测。实验结果表明,与已有零填充最大比合并算法(Maximal Ratio Combining Based on Zero Padding,ZP-MRC)和零填充块线性最小均方误差算法(Block Linear Minimum Mean Square Error Based on Zero Padding,ZP-BLMMSE)相比,所提算法能快速收敛,在10-4误码率条件下,信噪比提升了2 dB以上。
文摘为了降低Turbo均衡中均衡器的复杂度,该文提出了符号方差反馈均衡算法(SVFE)。该算法是对精确的线性最小均方误差估计值(LMMSE)进行Taylor展开得到的。在该算法中,先利用时不变均衡器得到初步符号估计值,再根据先验符号方差对估计值加权,最后进行时不变滤波得到更佳的符号估计值。由于用到了时变的先验符号方差信息,其性能更接近精确的LMMSE均衡器。将所提算法用于Proakis C信道下的Turbo均衡处理,和时不变均衡算法进行仿真对比,所提算法将信噪比损失从0.83 d B降到了0.17 d B,并且仍可通过快速傅里叶变换降低为对数复杂度。