Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement ...Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.展开更多
模型检查是一种用于并发系统的性质验证的算法技术.LTLC(linear temporal logic with clocks)是一种连续时间时序逻辑,它是线性时序逻辑LTL的一种实时扩充.讨论实时系统关于LTLC公式的模型检查问题,将实时系统关于LTLC公式的模型检查化...模型检查是一种用于并发系统的性质验证的算法技术.LTLC(linear temporal logic with clocks)是一种连续时间时序逻辑,它是线性时序逻辑LTL的一种实时扩充.讨论实时系统关于LTLC公式的模型检查问题,将实时系统关于LTLC公式的模型检查化归为有穷状态转换系统关于LTL公式的模型检查,从而可以利用LTL的模型检查工具来对LTLC进行模型检查.由于LTLC既能表示实时系统的性质,又能表示实时系统的实现,这就使得时序逻辑LTLC的模型检查过程既能用于实时系统的性质验证,又能用于实时系统之间的一致性验证.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(DUT22RT(3)090)the National Natural Science Foundation of China(61890920,61890921,62122016,08120003)Liaoning Science and Technology Program(2023JH2/101700361).
文摘Linear temporal logic(LTL)is an intuitive and expressive language to specify complex control tasks,and how to design an efficient control strategy for LTL specification is still a challenge.In this paper,we implement the dynamic quantization technique to propose a novel hierarchical control strategy for nonlinear control systems under LTL specifications.Based on the regions of interest involved in the LTL formula,an accepting path is derived first to provide a high-level solution for the controller synthesis problem.Second,we develop a dynamic quantization based approach to verify the realization of the accepting path.The realization verification results in the necessity of the controller design and a sequence of quantization regions for the controller design.Third,the techniques of dynamic quantization and abstraction-based control are combined together to establish the local-to-global control strategy.Both abstraction construction and controller design are local and dynamic,thereby resulting in the potential reduction of the computational complexity.Since each quantization region can be considered locally and individually,the proposed hierarchical mechanism is more efficient and can solve much larger problems than many existing methods.Finally,the proposed control strategy is illustrated via two examples from the path planning and tracking problems of mobile robots.
文摘模型检查是一种用于并发系统的性质验证的算法技术.LTLC(linear temporal logic with clocks)是一种连续时间时序逻辑,它是线性时序逻辑LTL的一种实时扩充.讨论实时系统关于LTLC公式的模型检查问题,将实时系统关于LTLC公式的模型检查化归为有穷状态转换系统关于LTL公式的模型检查,从而可以利用LTL的模型检查工具来对LTLC进行模型检查.由于LTLC既能表示实时系统的性质,又能表示实时系统的实现,这就使得时序逻辑LTLC的模型检查过程既能用于实时系统的性质验证,又能用于实时系统之间的一致性验证.