In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was pre...In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.展开更多
The flexibility in radiotherapy can be improved if patients can be moved between any one of the department’s medical linear accelerators (LINACs) without the need to change anything in the patient’s treatment plan. ...The flexibility in radiotherapy can be improved if patients can be moved between any one of the department’s medical linear accelerators (LINACs) without the need to change anything in the patient’s treatment plan. For this to be possible, the dosimetric characteristics of the various accelerators must be the same, or nearly the same. The purpose of this work is to describe further and compare measurements and parameters after the initial vendor-recommended beam matching of the five LINACs. Deviations related to dose calculations and to beam matched accelerators may compromise treatment accuracy. The safest and most practical way to ensure that all accelerators are within clinical acceptable accuracy is to include TPS calculations in the LINACs matching evaluation. Treatment planning system (TPS) was used to create three photons plans with different field sizes 3 × 3 cm, 10 × 10 cm and 25 × 25 cm at a depth of 4.5 cm in Perspex. Calculated TPS plans were sent to Mosaiq to be delivered by five LINACs. TPS plans were compared with five LINACs measurements data using Gamma analyses of 2% and 2 mm. The results suggest that for four out of the five LINACs, there was generally good agreement, less than a 2% deviation between the planned dose distribution and the measured dose distribution. However, one specific LINAC named “Asterix” exhibited a deviation of 2.121% from the planned dose. The results show that all of the LINACs’ performance were within the acceptable deviation and delivering radiation dose consistently and accurately.展开更多
Astronaut's body mass is an essential factor of health monitoring in space.The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method.The principle of th...Astronaut's body mass is an essential factor of health monitoring in space.The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method.The principle of this method is that the device generates a constant pulling force,and the astronaut is accelerated on a parallelogram motion guide which rotates at a large radius to achieve a nearly linear trajectory.The acceleration is calculated by regression analysis of the displacement versus time trajectory and the body mass is calculated by using the formula m=F/a.However,in actual flight,the device is instable that the deviation between runs could be 6-7 kg.This paper considers the body non-rigidity as the major cause of error and instability and analyzes the effects of body non-rigidity from different aspects.Body non-rigidity makes the acceleration of the center of mass (C.M.) oscillate and fall behind the point where force is applied.Actual acceleration curves showed that the overall effect of body non-rigidity is an oscillation at about 7 Hz and a deviation of about 25%.To enhance body rigidity,better body restraints were introduced and a prototype based on linear acceleration method was built.Measurement experiment was carried out on ground on an air table.Three human subjects weighing 60-70 kg were measured.The average variance was 0.04 kg and the average measurement error was 0.4%.This study will provide reference for future development of China's own mass measurement device.展开更多
The application of a thermoluminescent detector(TLD) for dose detection at the liver irradiation site in mice under linear accelerator precision radiotherapy and the use of a single high dose to irradiate the mouse li...The application of a thermoluminescent detector(TLD) for dose detection at the liver irradiation site in mice under linear accelerator precision radiotherapy and the use of a single high dose to irradiate the mouse liver to construct a biological model of a radiation-induced liver injury(RILD) in mice were to determine the feasibility of constructing a precision radiotherapy model in small animals under a linear accelerator. A 360° arc volumetric rotational intensity-modulated radiotherapy(VMAT) plan with a prescribed dose of 2 Gy was developed for the planned target volume(PTV) at the location of the TLD within solid water to compare the difference between the measured dose of TLD and the assessed parameters in the TPS system. The TLD was implanted in the livers of mice, and VMAT was planned based on TLD to compare the measured and prescribed doses. C57BL/6 J mice were randomly divided into control and 25-Gy radiation groups and were examined daily for changes in body weight. They were euthanized at 3 and 10 weeks after radiation, and the levels of liver serum enzymes such as alanine aminotransferase(ALT), aspartate aminotransferase(AST), and alkaline phosphatase(ALP) were measured to observe any pathological histological changes in the irradiated areas of the mouse liver. The measured values of solid underwater TLD were within ± 3% of the Dmean value of the evaluation parameter in the TPS system. The mice in the 25-Gy radiation group demonstrated pathological signs of radiation-induced liver injury at the site of liver irradiation. The deviation in the measured and prescribed doses of TLD in the mouse liver ranged from-1.5 to 6%;construction of an accurate model of RILD using the VMAT technique under a linear accelerator is feasible.展开更多
Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has a...Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.展开更多
This paper details the development and testing of the first working prototype of the S-band high-power klystron,accomplished at the Budker Institute of Nuclear Physics,Siberian Branch,Russian Academy of Sciences(BINP ...This paper details the development and testing of the first working prototype of the S-band high-power klystron,accomplished at the Budker Institute of Nuclear Physics,Siberian Branch,Russian Academy of Sciences(BINP SB RAS).Upon testing,the klystron demonstrated the following parameters:an operating frequency of 2856 MHz and a peak power output of 50 MW.The paper presents the klystron's design,its constituent units,and pertinent processing procedures,along with discussions on the measurement of its parameters.展开更多
One of the most important components of a linac is bunchcr. Throughout most of the buncher, the electrons are well forward of the crest and have velocities considerably less than light velocity, thus they arc in a reg...One of the most important components of a linac is bunchcr. Throughout most of the buncher, the electrons are well forward of the crest and have velocities considerably less than light velocity, thus they arc in a region of radial dcfocusing and a considerable fraction of the beam will be lost unless defocusing action is counteracted by some other applied forces. The simplest way to do this is to sct up a longitudinal magnetic field which intcmcts with the radial motion of the electrons and causes them to follow helical orbits through the space occupied by the field. In this paper, five solenoids were designed to provide necessary magnetic field inside the bunchcr. Magnetic field was analytically calculated and compared with simulation results of Computer Simulation Technology (CST). Because of resistance in wires, some amount of energy appears in form of heat, so heat power was calculated analytically and cooling system was designed for these solenoids by Analysis System (ANSYS).展开更多
Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</s...Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.展开更多
Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film,and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakag...Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film,and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakage radiation around the head of the linear accelerators.Methods:Measurements were performed using a 30 cm3ion chamber;the gantry at 0°,the X-ray head at 0°,the field size at between the central axis and a plane surface at a FSD of 100 as a reference,a series of concentric circles having radii of 50,75,and 100 cm with their common centre at the reference point.The absorbed dose was measured at the reference point,and this would be used as the reference dose.With the diaphragm closed,the measurements were taken along the circumference of the three circles and at 45°intervals.Results:Leakage radiations while the treatment head was in the vertical position varied between 0.016%–0.04%.With the head lying horizontally,leakage radiation was the same order magnitude and varied between 0.02%–0.07%.In the second method,the verification was accomplished by closing the collimator jaws and covering the head of the treatment unit with the ready pack films.The films were marked to permit the determination of their positions on the machine after exposed and processed.With the diaphragm closed,and the ready packs films around the linear accelerator the beam turned on for 2500 cGy(2500 MU).The optical density of these films was measured and compared with this of the reference dose.Leakage radiation varied according to the film positions and the magnitude of leakage was between 0.005%–0.075%.Conclusion:The differences between the values of the leakage radiation levels observed at different measurement points do not only reflect differences in the effective shielding thickness of the head wall,but are also related to differences in the distances between the target and the measurement points.The experimental errors involved in dosimetric measurement also contribute to such differences.展开更多
<strong>Purpose:</strong> The energy spectrum of a linear accelerator used for dose calculations is determined during beam commissioning by iteratively adjusting the spectrum and comparing calculated and m...<strong>Purpose:</strong> The energy spectrum of a linear accelerator used for dose calculations is determined during beam commissioning by iteratively adjusting the spectrum and comparing calculated and measured percent depth-dose curves. Direct measurement of the energy spectrum using pulse mode detectors is particularly challenging because of the high-energy, high fluence nature of these beams and limitations of the detector systems. This work implements a Compton scattering (CS) spectroscopy setup and presents detector corrections and spectral unfolding techniques to measure the spectrum of a 6 MV linear accelerator using a pulse mode detector. <strong>Methods:</strong> Spectral measurements were performed using a Varian Clinac 21EX linear accelerator and a high-purity germanium (HPGe) detector. To reduce fluence to the detector, a custom-built lead shield and a CS spectrometry setup were used. The detector was placed at CS angles of 46<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>, 89<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>, and 125<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>. At each of these locations, a detector response function was generated to account for photon interactions within the experimental geometry. Gold’s deconvolution algorithm was used to unfold the energy spectrum. The measured spectra were compared to simulated spectra, which were obtained using an experimentally benchmarked model of the Clinac 21EX in MCNP6. <strong>Results:</strong> Measurements were acquired and detector response corrections were calculated for all three CS angles. A comparison of spectra for all CS angles showed good agreement with one another. The spectra for all three angles were averaged and showed good agreement with the MCNP6 simulated spectrum, with all points above 400 keV falling within 4%, which was within the uncertainty of the measurement and statistical uncertainty. <strong>Conclusions:</strong> The measurement of the energy spectrum of a 6 MV linear accelerator using a pulse-mode detector is presented in this work. For accurate spectrum determination, great care must be taken to optimize the detector setup, determine proper corrections, and to unfold the spectrum.展开更多
A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems...A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.展开更多
Superconducting linear accelerators(SCL)have a high acceleration gradient and are capable of operating in a high-duty factor mode.For high-power and high-intensity SCL,the design of beam dynamics generally follows the...Superconducting linear accelerators(SCL)have a high acceleration gradient and are capable of operating in a high-duty factor mode.For high-power and high-intensity SCL,the design of beam dynamics generally follows the principle that the zero-current periodic phase advance(σ0)of each degree of freedom is less than 90°to avoid envelope instability caused by space charge.However,this principle is obtained under the condition of a completely periodic focusing channel,and it is ambiguous for pseudoperiodic structures,such as linear accelerators.Although transverse beam dynamics without acceleration have been studied by other researchers,it appears that there are some connections between pure 2D and 3D beam dynamics.Based on these two points,five focusing schemes for the solenoid and quadrupole doublet channels were designed to simulate the beam behavior with non-constantσ0.Among them,the four schemes follow the characteristics of variation in the zero-current longitudinal phase advance(σ0l)under a constant acceleration gradient and synchronous phase.The zero-current transverse phase advance(σ0t)is consistent withσ0l,based on the equipartition requirement.The initialσ0twas set to 120°,110°,100°,and 90°,and was then gradually decreased to approximately 40°at the end of the channel.The last scheme maintains the maximumσ0tof88°by reducing the acceleration gradient of the corresponding cavities,until the point at whichσ0tequals88°with a normal gradient.Using the stopbands obtained from the linearized envelope equations and multiparticle particle-in-cell(PIC)simulations,the transport properties of both continuous and 3D-bunched beams with the acceleration of the five focusing schemes were studied.It was found that for a CW beam,when tune depression>0.7,σ0tcan break through 90°when the beams were transported in both solenoid and quadrupole doublet periodic focusing channels.When tune depression<0.7,the conclusions were different.For the solenoid focusing system,σ0tcan partially break through 90°,and the beam quality is not significantly affected.For the quadrupole doublet focusing system,a partial breakthrough of 90°has a greater impact on the beam quality.The same conclusions were obtained for a bunched beam with acceleration.展开更多
The dosimetric inter-comparison studies carry pertinent significance to ensure uniform radiation dose delivery for clinical trials. This paper investigates the comparative performance analysis of an X-ray high power l...The dosimetric inter-comparison studies carry pertinent significance to ensure uniform radiation dose delivery for clinical trials. This paper investigates the comparative performance analysis of an X-ray high power linear accelerator per- formed by the International Dosimetry Survey Mission and Institute of Nuclear Medicine & Oncology (INMOL), Lahore. The measurements were made using cylindrical ionization chambers based on the International Atomic Energy Agency (IAEA) TRS-398 protocol for absorbed dose-to-water dosimetric standards, and the percentage deviation was found to be between 0.5 % - 1%. The dosimetric analysis concerning linear X-ray accelerator output performed by INMOL, Lahore was found to be in good agreement with the results of IAEA Dosimtery Survey Mission.展开更多
The purpose of this work is to evaluate the use of a two-dimensional (2D) planar ion chamber array to characterize leakage radiation from the head of the linear accelerator. Ion chamber arrays provide a benefit over a...The purpose of this work is to evaluate the use of a two-dimensional (2D) planar ion chamber array to characterize leakage radiation from the head of the linear accelerator. Ion chamber arrays provide a benefit over a singular ion chamber measurement as they allow for the measurement of a larger area in order to isolate the point of maximum leakage dose and the small size of each individual ion chamber minimizes volume-averaging effects. A Varian Truebeam<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span></span></sup></span> undergoing acceptance testing was used for all measurements. The gantry was wrapped in Portal Pack for Localization (PPL) radiographic film in order to isolate the location of maximum leakage. A calibration curve was developed and used to determine dose-to-film. An Ion Chamber Profiler (IC Profiler<sup><span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:nowrap;">™</span></span></sup>) manufactured by Sun Nuclear Corporation was used to confirm measurements by the PPL film. All measurements were normalized to leakage at 100 cm from the target relative to the central axis. Three points were investigated with the IC Profiler, including the top of the gantry, the Varian logo, and the side of the gantry. For the three locations, respectively, the PPL film and the IC profiler were measured 0.142% and 0.131%, 0.036% and 0.030%, and 0.014% and 0.019%. The good agreement between the PPL film and the IC Profiler provides confidence in the use of a more efficient and accurate ion chamber array for head leakage measurements.展开更多
Purpose: To model the ELEKTA COMPACT accelerator head by using EGSnrc/BEAMnrc/DOSXYZnrc and to validatethe simulation according to the depth-dose and lateral profiles of different radiation fields measured by the...Purpose: To model the ELEKTA COMPACT accelerator head by using EGSnrc/BEAMnrc/DOSXYZnrc and to validatethe simulation according to the depth-dose and lateral profiles of different radiation fields measured by the water phantom. Methods: IBA Blue Water Phantom2 and CC13 Ionization Chamber were used to measure the depth-dose curves at 10 cm × 10 cm field and profile curves at 10 cm depth underwater. In BEAMnrc, the main components of accelerator head and the initial electron beam are established based on the specifications file, and the phase space file containing the photon beam information is generated. In DOXYZnrc, phase space files were used to irradiate a homogeneous water phantom of the same size as the IBA water phantom, and the simulated percentage depth dose curves and lateral profiles were outputted. The accuracy of the model was evaluated by mean square error (MSE) compared with the measured data. PDD curves are used to determine the energy of the initial electron beam. Dose profile curves are used to adjust the flattening filter. The penumbra on lateral profiles is used to adjust the full-width half-maximum (FWHM) of the electron source. Result: The electron energy of 5.8 MeV was considered the best match after comparing the PDD curves of 5.6 - 6.2 MeV electron beams. The flattening filter can only be adjusted by trial. In the final result, the maximum fluctuation of profile curve within 80% of the maximum field size is less than 3%, which meets the requirements of field flatness. The optimum FWHM for different fields is not consistent due to the Transmission penumbra. But a match can be approached by adjusting the FWHM every 10 cm field size.展开更多
High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play...High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.展开更多
The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for l...The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.展开更多
Introduction: Radiotherapy (RT) is a vital cancer treatment modality for both curative and palliative purposes. Nepal is a developing country with a population of around 30 million people. Cancer affects 100 - 120 peo...Introduction: Radiotherapy (RT) is a vital cancer treatment modality for both curative and palliative purposes. Nepal is a developing country with a population of around 30 million people. Cancer affects 100 - 120 people out of every 100,000, and the figure is increasing. The number of radiation facility machines in the country is still countable in fingers. Purbanchal Cancer Hospital, Nepal is the first comprehensive cancer facility capable of performing stereotactic radiosurgery (SRS). Our facility has cutting-edge Varian Truebeam Linear Accelerators with millennium MLC, which makes SRS and SRT’S for intracranial lesions such as small benign and malignant tumors much easier. In addition to SRS, we are the pioneers of SBRT for lung using 4DCT, interstitial & intraluminal brachytherapy, RPM Gated & DIBH modalities in Nepal. Methods & Materials: The purpose of this study is to share our experience in establishing an SRS facility in the country, which includes training the RT team on the importance of process accuracy, patient selection, patient assessment, mould preparation, and describing image data acquisition, target, and organ at risk delineation on CT and MRI images, treatment planning process, and quality assurance. Results & Discussion: The plans for all SRS and SRT cases are based on target coverage, OAR sparing, hotspot inside the target, conformity index, heterogeneity index, and dose fall off. To select the final plan, we used strict passing criteria such as a conformity index Paddick (CIPaddick) more than 0.85, a falloff between 100% and 50% of less than 5.5 mm (maximum 6 mm in irregular targets), and a hotspot inside the target between 115 to 140 percent, as per clinical standards. In addition, we determined the CILomax and CIRTOG for each case. Passing criteria for verification plans are set as minimum of 95% for a 2% percentage dose difference (% DD) and a 2-mm distance to an agreement (DTA). We also gathered demographic data from patients treated in the first year, such as diagnosis, lesion size, dose fraction, heterogeneity index (HI), conformity index (CI) and gamma index. SRS/SRT treatment was successfully implemented, and over 40 patients were treated with positive clinical outcomes. Conclusion: SRS now has a wider range of alternatives, thanks to technology advancements in recent years. SRS’s dosimetric advantages have steadily been extended to extracranial locations. Purbanchal Cancer Hospital, Birtamode, Nepal established a comprehensive cancer facility with qualified workforce with the goal of providing high-quality treatment to the people of Nepal.展开更多
A method for designing an X-ray flatness filter for medical electron linac is developed. It is used in the optimization process in the electron beam radiation system. Monte Carlo simulation method is used and two exam...A method for designing an X-ray flatness filter for medical electron linac is developed. It is used in the optimization process in the electron beam radiation system. Monte Carlo simulation method is used and two examples of real radiation system optimization processes for China-made medical electron linac are provided: 15 MV X- ray system of BJ-20 linac, and 12 MeV electron system of BJ-14. Results are verified by using the traditional method.展开更多
文摘In order to solve the problem, which may be encountered by those former schemes, such as six accelerometer, nine accelerometer configuration, under specific conditions, a ten accelerometer configuration was presented to compute the rotational and translational accelerations of a rigid body, based on well known kinematics principles. The theoretical analysis shows that the configuration can meet the requirement. The simulation results of this scheme show promise for measuring a rigid body's rotational and translational accelerations.
文摘The flexibility in radiotherapy can be improved if patients can be moved between any one of the department’s medical linear accelerators (LINACs) without the need to change anything in the patient’s treatment plan. For this to be possible, the dosimetric characteristics of the various accelerators must be the same, or nearly the same. The purpose of this work is to describe further and compare measurements and parameters after the initial vendor-recommended beam matching of the five LINACs. Deviations related to dose calculations and to beam matched accelerators may compromise treatment accuracy. The safest and most practical way to ensure that all accelerators are within clinical acceptable accuracy is to include TPS calculations in the LINACs matching evaluation. Treatment planning system (TPS) was used to create three photons plans with different field sizes 3 × 3 cm, 10 × 10 cm and 25 × 25 cm at a depth of 4.5 cm in Perspex. Calculated TPS plans were sent to Mosaiq to be delivered by five LINACs. TPS plans were compared with five LINACs measurements data using Gamma analyses of 2% and 2 mm. The results suggest that for four out of the five LINACs, there was generally good agreement, less than a 2% deviation between the planned dose distribution and the measured dose distribution. However, one specific LINAC named “Asterix” exhibited a deviation of 2.121% from the planned dose. The results show that all of the LINACs’ performance were within the acceptable deviation and delivering radiation dose consistently and accurately.
文摘Astronaut's body mass is an essential factor of health monitoring in space.The latest mass measurement device for the International Space Station (ISS) has employed a linear acceleration method.The principle of this method is that the device generates a constant pulling force,and the astronaut is accelerated on a parallelogram motion guide which rotates at a large radius to achieve a nearly linear trajectory.The acceleration is calculated by regression analysis of the displacement versus time trajectory and the body mass is calculated by using the formula m=F/a.However,in actual flight,the device is instable that the deviation between runs could be 6-7 kg.This paper considers the body non-rigidity as the major cause of error and instability and analyzes the effects of body non-rigidity from different aspects.Body non-rigidity makes the acceleration of the center of mass (C.M.) oscillate and fall behind the point where force is applied.Actual acceleration curves showed that the overall effect of body non-rigidity is an oscillation at about 7 Hz and a deviation of about 25%.To enhance body rigidity,better body restraints were introduced and a prototype based on linear acceleration method was built.Measurement experiment was carried out on ground on an air table.Three human subjects weighing 60-70 kg were measured.The average variance was 0.04 kg and the average measurement error was 0.4%.This study will provide reference for future development of China's own mass measurement device.
基金supported by the Natural Science Foundation of Anhui Province (No.2208085MA13)Wu Je Ping Medical Foundation (No.320.6750.2020-10-40)the Key Research and Development Program of Anhui Province (No.202004J07020052)。
文摘The application of a thermoluminescent detector(TLD) for dose detection at the liver irradiation site in mice under linear accelerator precision radiotherapy and the use of a single high dose to irradiate the mouse liver to construct a biological model of a radiation-induced liver injury(RILD) in mice were to determine the feasibility of constructing a precision radiotherapy model in small animals under a linear accelerator. A 360° arc volumetric rotational intensity-modulated radiotherapy(VMAT) plan with a prescribed dose of 2 Gy was developed for the planned target volume(PTV) at the location of the TLD within solid water to compare the difference between the measured dose of TLD and the assessed parameters in the TPS system. The TLD was implanted in the livers of mice, and VMAT was planned based on TLD to compare the measured and prescribed doses. C57BL/6 J mice were randomly divided into control and 25-Gy radiation groups and were examined daily for changes in body weight. They were euthanized at 3 and 10 weeks after radiation, and the levels of liver serum enzymes such as alanine aminotransferase(ALT), aspartate aminotransferase(AST), and alkaline phosphatase(ALP) were measured to observe any pathological histological changes in the irradiated areas of the mouse liver. The measured values of solid underwater TLD were within ± 3% of the Dmean value of the evaluation parameter in the TPS system. The mice in the 25-Gy radiation group demonstrated pathological signs of radiation-induced liver injury at the site of liver irradiation. The deviation in the measured and prescribed doses of TLD in the mouse liver ranged from-1.5 to 6%;construction of an accurate model of RILD using the VMAT technique under a linear accelerator is feasible.
基金supported by the project“PARIDE”(Perovskite Advanced Radiotherapy&Imaging Detectors),funded under the Regional Research and Innovation Programme POR-FESR Lazio 2014-2020(project number:A0375-2020-36698).
文摘Metal-halide perovskites are revolutionizing the world of X-ray detectors,due to the development of sensitive,fast,and cost-effective devices.Self-powered operation,ensuring portability and low power consumption,has also been recently demonstrated in both bulk materials and thin films.However,the signal stability and repeatability under continuous X-ray exposure has only been tested up to a few hours,often reporting degradation of the detection performance.Here it is shown that self-powered direct X-ray detectors,fabricated starting from a FAPbBr_(3)submicrometer-thick film deposition onto a mesoporous TiO_(2)scaffold,can withstand a 26-day uninterrupted X-ray exposure with negligible signal loss,demonstrating ultra-high operational stability and excellent repeatability.No structural modification is observed after irradiation with a total ionizing dose of almost 200 Gy,revealing an unexpectedly high radiation hardness for a metal-halide perovskite thin film.In addition,trap-assisted photoconductive gain enabled the device to achieve a record bulk sensitivity of 7.28 C Gy^(−1)cm^(−3)at 0 V,an unprecedented value in the field of thin-film-based photoconductors and photodiodes for“hard”X-rays.Finally,prototypal validation under the X-ray beam produced by a medical linear accelerator for cancer treatment is also introduced.
文摘This paper details the development and testing of the first working prototype of the S-band high-power klystron,accomplished at the Budker Institute of Nuclear Physics,Siberian Branch,Russian Academy of Sciences(BINP SB RAS).Upon testing,the klystron demonstrated the following parameters:an operating frequency of 2856 MHz and a peak power output of 50 MW.The paper presents the klystron's design,its constituent units,and pertinent processing procedures,along with discussions on the measurement of its parameters.
文摘One of the most important components of a linac is bunchcr. Throughout most of the buncher, the electrons are well forward of the crest and have velocities considerably less than light velocity, thus they arc in a region of radial dcfocusing and a considerable fraction of the beam will be lost unless defocusing action is counteracted by some other applied forces. The simplest way to do this is to sct up a longitudinal magnetic field which intcmcts with the radial motion of the electrons and causes them to follow helical orbits through the space occupied by the field. In this paper, five solenoids were designed to provide necessary magnetic field inside the bunchcr. Magnetic field was analytically calculated and compared with simulation results of Computer Simulation Technology (CST). Because of resistance in wires, some amount of energy appears in form of heat, so heat power was calculated analytically and cooling system was designed for these solenoids by Analysis System (ANSYS).
文摘Motive of the study is to present quantitative and qualitative analysis and comparison of beam data measurement with FF (flattening filter) and FFF (flattening filter free) beam in a Varian TrueBeam<sup>TM</sup> Medical Linear Accelerator. Critique of beam characterization and evolution of dosimetric properties for 6 MV, 10 MV, 15 MV FF beam and 6 MVFFF, 10 MVFFF FFF beam has been carried out. We performed the comparison of photon beam data for two standard FF photon energy 6 MV, 10 MV verses 6 MVFFF, and 10 MVFFF FFF beam. Determination and comparison of parameter involved PDD (Percentage depth dose), Depth dose profile, Symmetry, Flatness, Quality index, Relative output factor, Penumbra, Transmission factor, DLG (Dosimetric leaf gap), in addition to degree of Un-flatness and off-axis ratio of FFF beam. Outcomes of presenting study had shown that change of various parameters such as Percentage depth dose curves, Shape of the depth dose profile, Transmission, Value of quality index and significant rise in surface dose for FFF in comparison with FF beam. Differences in the output factor at lower and higher field sizes for FFF beam compared to that of FF beam were found. The maximum output factor deviation between 6 MV and 6 MVFFF was found to be 4.55%, whereas in 10 MV and 10 MVFFF was 5.71%. Beam quality TPR20/10 for FFF beam was found to be lesser in magnitude, 5.42% for 6 MVFFF whereas 4.50% for 10 MVFFF compared to 6 MV and 10 MV FF beam respectively. Jaw transmission and interleaf leakage for FFF beam were found to be lesser than FF beam. Also DLG for FFF beam was found to be lesser in magnitude comparable to that of flattened beam. This study is mainly inclined towards evaluation and comparison of the FF and FFF beam. It has been observed that, the outcome of a commissioning beam data generation fully complies with vendor specification and published literature.
文摘Objective:The aim of this study was to measure the leakage by two methods with ion chamber and ready packs film,and to investigate the feasibility and the advantages of using two dosimetry methods for assessing leakage radiation around the head of the linear accelerators.Methods:Measurements were performed using a 30 cm3ion chamber;the gantry at 0°,the X-ray head at 0°,the field size at between the central axis and a plane surface at a FSD of 100 as a reference,a series of concentric circles having radii of 50,75,and 100 cm with their common centre at the reference point.The absorbed dose was measured at the reference point,and this would be used as the reference dose.With the diaphragm closed,the measurements were taken along the circumference of the three circles and at 45°intervals.Results:Leakage radiations while the treatment head was in the vertical position varied between 0.016%–0.04%.With the head lying horizontally,leakage radiation was the same order magnitude and varied between 0.02%–0.07%.In the second method,the verification was accomplished by closing the collimator jaws and covering the head of the treatment unit with the ready pack films.The films were marked to permit the determination of their positions on the machine after exposed and processed.With the diaphragm closed,and the ready packs films around the linear accelerator the beam turned on for 2500 cGy(2500 MU).The optical density of these films was measured and compared with this of the reference dose.Leakage radiation varied according to the film positions and the magnitude of leakage was between 0.005%–0.075%.Conclusion:The differences between the values of the leakage radiation levels observed at different measurement points do not only reflect differences in the effective shielding thickness of the head wall,but are also related to differences in the distances between the target and the measurement points.The experimental errors involved in dosimetric measurement also contribute to such differences.
文摘<strong>Purpose:</strong> The energy spectrum of a linear accelerator used for dose calculations is determined during beam commissioning by iteratively adjusting the spectrum and comparing calculated and measured percent depth-dose curves. Direct measurement of the energy spectrum using pulse mode detectors is particularly challenging because of the high-energy, high fluence nature of these beams and limitations of the detector systems. This work implements a Compton scattering (CS) spectroscopy setup and presents detector corrections and spectral unfolding techniques to measure the spectrum of a 6 MV linear accelerator using a pulse mode detector. <strong>Methods:</strong> Spectral measurements were performed using a Varian Clinac 21EX linear accelerator and a high-purity germanium (HPGe) detector. To reduce fluence to the detector, a custom-built lead shield and a CS spectrometry setup were used. The detector was placed at CS angles of 46<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>, 89<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>, and 125<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span>. At each of these locations, a detector response function was generated to account for photon interactions within the experimental geometry. Gold’s deconvolution algorithm was used to unfold the energy spectrum. The measured spectra were compared to simulated spectra, which were obtained using an experimentally benchmarked model of the Clinac 21EX in MCNP6. <strong>Results:</strong> Measurements were acquired and detector response corrections were calculated for all three CS angles. A comparison of spectra for all CS angles showed good agreement with one another. The spectra for all three angles were averaged and showed good agreement with the MCNP6 simulated spectrum, with all points above 400 keV falling within 4%, which was within the uncertainty of the measurement and statistical uncertainty. <strong>Conclusions:</strong> The measurement of the energy spectrum of a 6 MV linear accelerator using a pulse-mode detector is presented in this work. For accurate spectrum determination, great care must be taken to optimize the detector setup, determine proper corrections, and to unfold the spectrum.
基金supported by the National Natural Science Foundation of China (No. 11071033)the Fundamental Research Funds for the Central Universities (No. 090405013)
文摘A class of preconditioned iterative methods, i.e., preconditioned generalized accelerated overrelaxation (GAOR) methods, is proposed to solve linear systems based on a class of weighted linear least squares problems. The convergence and comparison results are obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is better than that of the original methods. Furthermore, the effectiveness of the proposed methods is shown in the numerical experiment.
基金the National Natural Science Foundation of China(Nos.11375122 and 11875197).
文摘Superconducting linear accelerators(SCL)have a high acceleration gradient and are capable of operating in a high-duty factor mode.For high-power and high-intensity SCL,the design of beam dynamics generally follows the principle that the zero-current periodic phase advance(σ0)of each degree of freedom is less than 90°to avoid envelope instability caused by space charge.However,this principle is obtained under the condition of a completely periodic focusing channel,and it is ambiguous for pseudoperiodic structures,such as linear accelerators.Although transverse beam dynamics without acceleration have been studied by other researchers,it appears that there are some connections between pure 2D and 3D beam dynamics.Based on these two points,five focusing schemes for the solenoid and quadrupole doublet channels were designed to simulate the beam behavior with non-constantσ0.Among them,the four schemes follow the characteristics of variation in the zero-current longitudinal phase advance(σ0l)under a constant acceleration gradient and synchronous phase.The zero-current transverse phase advance(σ0t)is consistent withσ0l,based on the equipartition requirement.The initialσ0twas set to 120°,110°,100°,and 90°,and was then gradually decreased to approximately 40°at the end of the channel.The last scheme maintains the maximumσ0tof88°by reducing the acceleration gradient of the corresponding cavities,until the point at whichσ0tequals88°with a normal gradient.Using the stopbands obtained from the linearized envelope equations and multiparticle particle-in-cell(PIC)simulations,the transport properties of both continuous and 3D-bunched beams with the acceleration of the five focusing schemes were studied.It was found that for a CW beam,when tune depression>0.7,σ0tcan break through 90°when the beams were transported in both solenoid and quadrupole doublet periodic focusing channels.When tune depression<0.7,the conclusions were different.For the solenoid focusing system,σ0tcan partially break through 90°,and the beam quality is not significantly affected.For the quadrupole doublet focusing system,a partial breakthrough of 90°has a greater impact on the beam quality.The same conclusions were obtained for a bunched beam with acceleration.
文摘The dosimetric inter-comparison studies carry pertinent significance to ensure uniform radiation dose delivery for clinical trials. This paper investigates the comparative performance analysis of an X-ray high power linear accelerator per- formed by the International Dosimetry Survey Mission and Institute of Nuclear Medicine & Oncology (INMOL), Lahore. The measurements were made using cylindrical ionization chambers based on the International Atomic Energy Agency (IAEA) TRS-398 protocol for absorbed dose-to-water dosimetric standards, and the percentage deviation was found to be between 0.5 % - 1%. The dosimetric analysis concerning linear X-ray accelerator output performed by INMOL, Lahore was found to be in good agreement with the results of IAEA Dosimtery Survey Mission.
文摘The purpose of this work is to evaluate the use of a two-dimensional (2D) planar ion chamber array to characterize leakage radiation from the head of the linear accelerator. Ion chamber arrays provide a benefit over a singular ion chamber measurement as they allow for the measurement of a larger area in order to isolate the point of maximum leakage dose and the small size of each individual ion chamber minimizes volume-averaging effects. A Varian Truebeam<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;"><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">®</span></span></sup></span> undergoing acceptance testing was used for all measurements. The gantry was wrapped in Portal Pack for Localization (PPL) radiographic film in order to isolate the location of maximum leakage. A calibration curve was developed and used to determine dose-to-film. An Ion Chamber Profiler (IC Profiler<sup><span style="font-size:6.5pt;font-family:;" "=""><span style="white-space:nowrap;">™</span></span></sup>) manufactured by Sun Nuclear Corporation was used to confirm measurements by the PPL film. All measurements were normalized to leakage at 100 cm from the target relative to the central axis. Three points were investigated with the IC Profiler, including the top of the gantry, the Varian logo, and the side of the gantry. For the three locations, respectively, the PPL film and the IC profiler were measured 0.142% and 0.131%, 0.036% and 0.030%, and 0.014% and 0.019%. The good agreement between the PPL film and the IC Profiler provides confidence in the use of a more efficient and accurate ion chamber array for head leakage measurements.
文摘Purpose: To model the ELEKTA COMPACT accelerator head by using EGSnrc/BEAMnrc/DOSXYZnrc and to validatethe simulation according to the depth-dose and lateral profiles of different radiation fields measured by the water phantom. Methods: IBA Blue Water Phantom2 and CC13 Ionization Chamber were used to measure the depth-dose curves at 10 cm × 10 cm field and profile curves at 10 cm depth underwater. In BEAMnrc, the main components of accelerator head and the initial electron beam are established based on the specifications file, and the phase space file containing the photon beam information is generated. In DOXYZnrc, phase space files were used to irradiate a homogeneous water phantom of the same size as the IBA water phantom, and the simulated percentage depth dose curves and lateral profiles were outputted. The accuracy of the model was evaluated by mean square error (MSE) compared with the measured data. PDD curves are used to determine the energy of the initial electron beam. Dose profile curves are used to adjust the flattening filter. The penumbra on lateral profiles is used to adjust the full-width half-maximum (FWHM) of the electron source. Result: The electron energy of 5.8 MeV was considered the best match after comparing the PDD curves of 5.6 - 6.2 MeV electron beams. The flattening filter can only be adjusted by trial. In the final result, the maximum fluctuation of profile curve within 80% of the maximum field size is less than 3%, which meets the requirements of field flatness. The optimum FWHM for different fields is not consistent due to the Transmission penumbra. But a match can be approached by adjusting the FWHM every 10 cm field size.
基金supported by the Science and Technology Major Project of Hubei Province,China (No.2021AFB001).
文摘High-brightness electron beams are required to drive LINAC-based free-electron lasers(FELs)and storage-ring-based synchrotron radiation light sources.The bunch charge and RMS bunch length at the exit of the LINAC play a crucial role in the peak current;the minimum transverse emittance is mainly determined by the injector of the LINAC.Thus,a photoin-jector with a high bunch charge and low emittance that can simultaneously provide high-quality beams for 4th generation synchrotron radiation sources and FELs is desirable.The design of a 1.6-cell S-band 2998-MHz RF gun and beam dynamics optimization of a relevant beamline are presented in this paper.Beam dynamics simulations were performed by combining ASTRA and the multi-objective genetic algorithm NSGA II.The effects of the laser pulse shape,half-cell length of the RF gun,and RF parameters on the output beam quality were analyzed and compared.The normalized transverse emittance was optimized to be as low as 0.65 and 0.92 mm·mrad when the bunch charge was as high as 1 and 2 nC,respectively.Finally,the beam stability properties of the photoinjector,considering misalignment and RF jitter,were simulated and analyzed.
文摘The Radio Frequency Quadrupole (RFQ) accelerator invented by Kapchinskii and Tepliakov can focus, bunch, and accelerate charged-particle beams simultaneously. Typically, it operates at frequencies up to 500 MHz, for low particle velocities ( β ). The first attempt to design cylindrical RFQ for electrons in the GHz region was done using 3 GHz at Frascati in 1990. In this paper, an analytical approximation of the electromagnetic field is given, and linearized in the beam region for a rectangular Electron Radio Frequency Quadrupole (ERFQ). The differences between the proton-RFQ and the electron-RFQ are discussed. Then, it will be shown that contrary to the quadrupoles for protons or heavy-ions, the ERFQ is suited for electron velocities in the range 0.5 - 0.7 c, and possible applications are given. Finally, it is illustrated, with numerical field computations that this approach gives sufficient accuracy at 10 GHz.
文摘Introduction: Radiotherapy (RT) is a vital cancer treatment modality for both curative and palliative purposes. Nepal is a developing country with a population of around 30 million people. Cancer affects 100 - 120 people out of every 100,000, and the figure is increasing. The number of radiation facility machines in the country is still countable in fingers. Purbanchal Cancer Hospital, Nepal is the first comprehensive cancer facility capable of performing stereotactic radiosurgery (SRS). Our facility has cutting-edge Varian Truebeam Linear Accelerators with millennium MLC, which makes SRS and SRT’S for intracranial lesions such as small benign and malignant tumors much easier. In addition to SRS, we are the pioneers of SBRT for lung using 4DCT, interstitial & intraluminal brachytherapy, RPM Gated & DIBH modalities in Nepal. Methods & Materials: The purpose of this study is to share our experience in establishing an SRS facility in the country, which includes training the RT team on the importance of process accuracy, patient selection, patient assessment, mould preparation, and describing image data acquisition, target, and organ at risk delineation on CT and MRI images, treatment planning process, and quality assurance. Results & Discussion: The plans for all SRS and SRT cases are based on target coverage, OAR sparing, hotspot inside the target, conformity index, heterogeneity index, and dose fall off. To select the final plan, we used strict passing criteria such as a conformity index Paddick (CIPaddick) more than 0.85, a falloff between 100% and 50% of less than 5.5 mm (maximum 6 mm in irregular targets), and a hotspot inside the target between 115 to 140 percent, as per clinical standards. In addition, we determined the CILomax and CIRTOG for each case. Passing criteria for verification plans are set as minimum of 95% for a 2% percentage dose difference (% DD) and a 2-mm distance to an agreement (DTA). We also gathered demographic data from patients treated in the first year, such as diagnosis, lesion size, dose fraction, heterogeneity index (HI), conformity index (CI) and gamma index. SRS/SRT treatment was successfully implemented, and over 40 patients were treated with positive clinical outcomes. Conclusion: SRS now has a wider range of alternatives, thanks to technology advancements in recent years. SRS’s dosimetric advantages have steadily been extended to extracranial locations. Purbanchal Cancer Hospital, Birtamode, Nepal established a comprehensive cancer facility with qualified workforce with the goal of providing high-quality treatment to the people of Nepal.
基金Supported by the National Natural Science Foundation of China (60672104,10675013)the Na-tional Basic Research Program of China ("973"Program)(2006CB705705)+1 种基金the 10th Five-Year Plan of the Ministry of Science and Technology of China(2001BA706B-05)the Joint Research Foundation of Beijing Municipal Commissionof Education~~
文摘A method for designing an X-ray flatness filter for medical electron linac is developed. It is used in the optimization process in the electron beam radiation system. Monte Carlo simulation method is used and two examples of real radiation system optimization processes for China-made medical electron linac are provided: 15 MV X- ray system of BJ-20 linac, and 12 MeV electron system of BJ-14. Results are verified by using the traditional method.