The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessar...The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.展开更多
A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration o...A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10932002,11172120,and 11202090)
文摘The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
基金This work is supported by the National Natural Science Foundation of China (No.21373064), the Program for Innovative Research Team of Guizhou Province (No.QKTD[2014]4021), and the Natural Sci- entific Foundation from Guizhou Provincial Department of Education (No.ZDXK[2014]IS). All the calculations were performed at Guizhou Provincial High- Performance Computing Center of Condensed Mate- rials and Molecular Simulation in Guizhou Education University.
文摘A wide range of quantum systems are time-invariant and the corresponding dynamics is dic- tated by linear differential equations with constant coefficients. Although simple in math- ematical concept, the integration of these equations is usually complicated in practice for complex systems, where both the computational time and the memory storage become limit- ing factors. For this reason, low-storage Runge-Kutta methods become increasingly popular for the time integration. This work suggests a series of s-stage sth-order explicit Runge- Kutta methods specific for autonomous linear equations, which only requires two times of the memory storage for the state vector. We also introduce a 13-stage eighth-order scheme for autonomous linear equations, which has optimized stability region and is reduced to a fifth-order method for general equations. These methods exhibit significant performance improvements over the previous general-purpose low-stage schemes. As an example, we ap- ply the integrator to simulate the non-Markovian exciton dynamics in a 15-site linear chain consisting of perylene-bisimide derivatives.