An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. ...An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.展开更多
A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is...A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.展开更多
In marine seismic exploration,especially in deep-water and hard ocean-bottom cases,free-surface multiples are strongly developed.Compared with primary waves,the wider illumination aperture of the multiples is benefici...In marine seismic exploration,especially in deep-water and hard ocean-bottom cases,free-surface multiples are strongly developed.Compared with primary waves,the wider illumination aperture of the multiples is beneficial for high-resolution seismic imaging.In this study,by introducing a new compound source composed of primaries and free-surface multiples and by ignoring internal multiples,we derive a new linearized forward problem(free-surface-multiple prediction model)under a weak-scattering assumption(i.e.,first-order Born approximation).On the basis of the new linearized problem,we propose a joint inversion-imaging method by simultaneously using the primaries and free-surface multiples under the general framework of least square inversion.To eliminate the crosstalk artifacts introduced by the cross-correlation of multiples with different orders,we prove that the crosstalk artifacts can be gradually eliminated during the inversion if a proper step length is selected.Synthetic-andfield-data tests demonstrate the effectiveness of the proposed method.展开更多
典型的无网格方法采用移动最小二乘函数(moving least squares,MLS)作为近似函数,但由于MLS不具备Kronecker delta函数性质,本质边界施加困难。LRPIM是采用径向基点插值形函数的无网格方法,本质边界条件无需特殊处理,可以直接施加,在保...典型的无网格方法采用移动最小二乘函数(moving least squares,MLS)作为近似函数,但由于MLS不具备Kronecker delta函数性质,本质边界施加困难。LRPIM是采用径向基点插值形函数的无网格方法,本质边界条件无需特殊处理,可以直接施加,在保持高精度的前提下提高计算效率。将LRPIM应用于机械结合面接触问题的计算。根据位移连续条件推导了含接触特性的线性互补方程,建立了基于LRPIM的计算模型,采用线性互补算法利用数值积分计算了几种典型的接触问题,得到了接触面压力分布和接触变形,分析了插值函数形状参数和积分域尺寸对计算结果的影响。研究结果表明,插值函数形状参数α_(c)对接触力的影响较小,而形状参数q取-0.5~1.2时有较好的收敛效果;积分域无量纲尺寸a_(qx)、a_(qy)大于1.5时计算结果开始收敛,大于2.5时出现发散现象,取值2.1时收敛效果最佳。将计算结果与已有结果进行比较,表明本研究方法有较高的求解精度。展开更多
Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results...Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results showed that in the X-axis, the maximum compressive stress of 850 MPa occurred in the center zone of friction interface , and the maximum tensile stress of 190 MPa distributed at the flash; in the Y-axis, the maximum compressive stress of 1 261 MPa located at the junction region between the welding fixture and edge of the specimen, and the maximum tensile stress of 320 MPa distributed in the connecting portion between the flash and edge of the specimen. In addition, areas of plastic strain increased gradually during welding process. In the X-axis, tensile strain mainly existed at the heads of the specimens; in the Y-axis, compressive strain mainly occurred at the heads of the specimens.展开更多
Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has rece...Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.展开更多
The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance jo...The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively.The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem(LCP) algorithm and the trial-and-error algorithm.Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.展开更多
基金Western Transport Construction Science and Technology Project of the Ministry of Transport of China ( No. 2009318000046)
文摘An iterative algorithm for modeling of non-linear joint by the displacement discontinuity method (DDM) was described, and the effect of the non-linear joint on the in-situ stress field was investigated in this paper. The Barton-Bandis (BB) non-linear joint model and failure criterion were adopted in the new DDM program. Using this program, the stress field around the non-linear joint was obtained, the parameters analysis of the joint was carried out, and the deformation and stress distribution of the joint were studied. The simulation results show that: (1)the in-situ stress is significantly affected by the joint; (2)the increase of stiffness, friction angle, and thickness of the joint affect the stress concentration in different ways; (3)the influence distance of the joint changes with the angle of the joint; (4)the deformation and stress of the joint change with the point position.
基金This research work was funded by Institutional Fund Projects under Grant No.(IFPRC-027-135-2020).
文摘A linear flexible joint system using fractional order linear active disturbance rejection control is studied in this paper.With this control scheme,the performance against disturbances,uncertainties,and attenuation is enhanced.Linear active disturbance rejection control(LADRC)is mainly based on an extended state observer(ESO)technology.A fractional integral(FOI)action is combined with the LADRC technique which proposes a hybrid control scheme like FO-LADRC.Incorporating this FOI action improves the robustness of the standard LADRC.The set-point tracking of the proposed FO-LADRC scheme is designed by Bode’s ideal transfer function(BITF)based robust closed-loop concept,an appropriate pole placement method.The effectiveness of the proposed FO-LADRC scheme is illustrated through experimental results on the linear flexible joint system(LFJS).The results show the enhancement of the robustness with disturbance rejection.Furthermore,a comparative analysis is presented with the results obtained using the integer-order LADRC and FO-LADRC scheme.
基金the sponsors of the WPI group for their financial supportfinancially supported by the National Key R&D Program of China (Grant Number: 2018YFA0702503, 2019YFC0312004)+2 种基金National Natural Science Foundation of China (Grant Number: 41774126)Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) (ZJW-2019-04)National Science and Technology Major Project of China (Grant Number: 2016ZX05024-001, 2016ZX05006-002)。
文摘In marine seismic exploration,especially in deep-water and hard ocean-bottom cases,free-surface multiples are strongly developed.Compared with primary waves,the wider illumination aperture of the multiples is beneficial for high-resolution seismic imaging.In this study,by introducing a new compound source composed of primaries and free-surface multiples and by ignoring internal multiples,we derive a new linearized forward problem(free-surface-multiple prediction model)under a weak-scattering assumption(i.e.,first-order Born approximation).On the basis of the new linearized problem,we propose a joint inversion-imaging method by simultaneously using the primaries and free-surface multiples under the general framework of least square inversion.To eliminate the crosstalk artifacts introduced by the cross-correlation of multiples with different orders,we prove that the crosstalk artifacts can be gradually eliminated during the inversion if a proper step length is selected.Synthetic-andfield-data tests demonstrate the effectiveness of the proposed method.
文摘典型的无网格方法采用移动最小二乘函数(moving least squares,MLS)作为近似函数,但由于MLS不具备Kronecker delta函数性质,本质边界施加困难。LRPIM是采用径向基点插值形函数的无网格方法,本质边界条件无需特殊处理,可以直接施加,在保持高精度的前提下提高计算效率。将LRPIM应用于机械结合面接触问题的计算。根据位移连续条件推导了含接触特性的线性互补方程,建立了基于LRPIM的计算模型,采用线性互补算法利用数值积分计算了几种典型的接触问题,得到了接触面压力分布和接触变形,分析了插值函数形状参数和积分域尺寸对计算结果的影响。研究结果表明,插值函数形状参数α_(c)对接触力的影响较小,而形状参数q取-0.5~1.2时有较好的收敛效果;积分域无量纲尺寸a_(qx)、a_(qy)大于1.5时计算结果开始收敛,大于2.5时出现发散现象,取值2.1时收敛效果最佳。将计算结果与已有结果进行比较,表明本研究方法有较高的求解精度。
文摘Abstract Transient stress and strain fields of dissimilar titanium alloys (TCll and TC17 ) joint during linear friction welding ( LFW) were investigated by a two-dimensional model with ABAQUS/Explicit. The results showed that in the X-axis, the maximum compressive stress of 850 MPa occurred in the center zone of friction interface , and the maximum tensile stress of 190 MPa distributed at the flash; in the Y-axis, the maximum compressive stress of 1 261 MPa located at the junction region between the welding fixture and edge of the specimen, and the maximum tensile stress of 320 MPa distributed in the connecting portion between the flash and edge of the specimen. In addition, areas of plastic strain increased gradually during welding process. In the X-axis, tensile strain mainly existed at the heads of the specimens; in the Y-axis, compressive strain mainly occurred at the heads of the specimens.
文摘Although many intact rock types can be very strong,a critical confining pressure can eventually be reached in triaxial testing,such that the Mohr shear strength envelope becomes horizontal.This critical state has recently been better defined,and correct curvature or correct deviation from linear Mohr-Coulomb(MC) has finally been found.Standard shear testing procedures for rock joints,using multiple testing of the same sample,in case of insufficient samples,can be shown to exaggerate apparent cohesion.Even rough joints do not have any cohesion,but instead have very high friction angles at low stress,due to strong dilation.Rock masses,implying problems of large-scale interaction with engineering structures,may have both cohesive and frictional strength components.However,it is not correct to add these,following linear M-C or nonlinear Hoek-Brown(H-B) standard routines.Cohesion is broken at small strain,while friction is mobilized at larger strain and remains to the end of the shear deformation.The criterion 'c then σn tan φ' should replace 'c plus σn tan φ' for improved fit to reality.Transformation of principal stresses to a shear plane seems to ignore mobilized dilation,and caused great experimental difficulties until understood.There seems to be plenty of room for continued research,so that errors of judgement of the last 50 years can be corrected.
基金Project supported by the National Natural Science Foundation of China(No.11772021)
文摘The objective of this study is to investigate the effects of the Coulomb dry friction model versus the modified Coulomb friction model on the dynamic behavior of the slider-crank mechanism with a revolute clearance joint. The normal and tangential forces acting on the contact points between the journal and the bearing are described by using a Hertzian-based contact force model and the Coulomb friction models, respectively.The dynamic equations of the mechanism are derived based on the Lagrange equations of the first kind and the Baumgarte stabilization method. The frictional force is solved via the linear complementarity problem(LCP) algorithm and the trial-and-error algorithm.Finally, three numerical examples are given to show the influence of the two Coulomb friction models on the dynamic behavior of the mechanism. Numerical results show that due to the stick friction, the slider-crank mechanism may exhibit stick-slip motion and can balance at some special positions, while the mechanism with ideal joints cannot.