期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
A Survey of Output Feedback Robust MPC for Linear Parameter Varying Systems 被引量:1
1
作者 Xubin Ping Jianchen Hu +3 位作者 Tingyu Lin Baocang Ding Peng Wang Zhiwu Li 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第10期1717-1751,共35页
For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivati... For constrained linear parameter varying(LPV)systems,this survey comprehensively reviews the literatures on output feedback robust model predictive control(OFRMPC)over the past two decades from the aspects on motivations,main contributions,and the related techniques.According to the types of state observer systems and scheduling parameters of LPV systems,different kinds of OFRMPC approaches are summarized and compared.The extensions of OFRMPC for LPV systems to other related uncertain systems are also investigated.The methods of dealing with system uncertainties and constraints in different kinds of OFRMPC optimizations are given.Key issues on OFRMPC optimizations for LPV systems are discussed.Furthermore,the future research directions on OFRMPC for LPV systems are suggested. 展开更多
关键词 linear parameter varying(LPV)systems model predictive control(MPC) output feedback robust control
下载PDF
An iterative algorithm for solving ill-conditioned linear least squares problems 被引量:8
2
作者 Deng Xingsheng Yin Liangbo +1 位作者 Peng Sichun Ding Meiqing 《Geodesy and Geodynamics》 2015年第6期453-459,共7页
Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics... Linear Least Squares(LLS) problems are particularly difficult to solve because they are frequently ill-conditioned, and involve large quantities of data. Ill-conditioned LLS problems are commonly seen in mathematics and geosciences, where regularization algorithms are employed to seek optimal solutions. For many problems, even with the use of regularization algorithms it may be impossible to obtain an accurate solution. Riley and Golub suggested an iterative scheme for solving LLS problems. For the early iteration algorithm, it is difficult to improve the well-conditioned perturbed matrix and accelerate the convergence at the same time. Aiming at this problem, self-adaptive iteration algorithm(SAIA) is proposed in this paper for solving severe ill-conditioned LLS problems. The algorithm is different from other popular algorithms proposed in recent references. It avoids matrix inverse by using Cholesky decomposition, and tunes the perturbation parameter according to the rate of residual error decline in the iterative process. Example shows that the algorithm can greatly reduce iteration times, accelerate the convergence,and also greatly enhance the computation accuracy. 展开更多
关键词 Severe ill-conditioned matrix linear least squares problems Self-adaptive Iterative scheme Cholesky decomposition Regularization parameter Tikhonov solution Truncated SVD solution
下载PDF
Polytopic LPV modeling and gain-scheduled switching control for a flexible air-breathing hypersonic vehicle 被引量:10
3
作者 Yiqing Huang Changyin Sun +2 位作者 Chengshan Qian Jingmei Zhang Li Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第1期118-127,共10页
A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a p... A novel gain-scheduled switching control method for the longitudinal motion of a flexible air-breathing hypersonic vehicle (FAHV) is proposed. Firstly, velocity and altitude are selected as scheduling variables, a polytopic linear parameter varying (LPV) model is developed to represent the complex nonlinear longitudinal dynamics of the FAHV. Secondly, based on the obtained polytopic LPV model, the flight envelope is divided into four smaller subregions, and four gain-scheduled controllers are designed for these parameter subregions. Then, by the defined switching characteristic function, these gain-scheduled controllers are switched in order to guarantee the closed-loop FAHV system to be asymptotically stable and satisfy a given tracking error performance criterion. The condition of gain-scheduled switching controller synthesis is given in terms of linear matrix inequalities (LMIs) which can be easily solved by using standard software packages. Finally, simulation results show the effectiveness of the presented method. 展开更多
关键词 linear parameter varying system gain-scheduled switching control tracking control hypersonic vehicle linear matrix inequality.
下载PDF
Limit equilibrium analysis for rock slope stability using basic Hoek–Brown strength criterion 被引量:5
4
作者 邓东平 赵炼恒 李亮 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2154-2163,共10页
Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only sui... Hoek–Brown(HB)strength criterion can reflect rock’s inherent failure nature,so it is more suitable for analyzing the stability of rock slopes.However,the traditional limit equilibrium methods are at present only suitable for analyzing the rock slope stability using the linear equivalent Mohr–Coulomb(EMC)strength parameters instead of the nonlinear HB strength criterion.Therefore,a new method derived to analyze directly the rock slope stability using the nonlinear HB strength criterion for arbitrary curve slip surface was described in the limit equilibrium framework.The current method was established based on certain assumptions concerning the stresses on the slip surface through amending the initial normal stressσ0 obtained without considering the effect of inter-slice forces,and it can satisfy all static equilibrium conditions of the sliding body,so the current method can obtain the reasonable and strict factor of safety(FOS)solutions.Compared with the results of other methods in some examples,the feasibility of the current method was verified.Meanwhile,the parametric analysis shows that the slope angleβhas an important influence on the difference of the results obtained using the nonlinear HB strength criterion and its linear EMC strength parameters.Forβ≤45°,both of the results are similar,showing the traditional limit equilibrium methods using the linear EMC strength parameters and the current method are all suitable to analyze rock slope stability,but forβ>60°,the differences of both the results are obvious,showing the actual slope stability state can not be reflected in the traditional limit equilibrium methods,and then the current method should be used. 展开更多
关键词 Hoek-Brown strength criterion linear equivalent Mohr-Coulomb strength parameters slope stability limit equilibrium slip surface factor of safety
下载PDF
Feedback Control for Ecosystem Management:The Case of Wolf-Elk-Hunting Dynamics in the US Mountain West 被引量:1
5
作者 Kevin MACKSAMIE Jeffrey WAGNER Juan C.COCKBURN 《Journal of Mountain Science》 SCIE CSCD 2014年第4期850-865,共16页
The purpose of this paper is to explore the promise of utilizing some relatively new feedback control techniques in ecosystem management. First, we set forth a basic ecological-economic model of a predator-prey-huntin... The purpose of this paper is to explore the promise of utilizing some relatively new feedback control techniques in ecosystem management. First, we set forth a basic ecological-economic model of a predator-prey-hunting system in which both the predator and prey have use(flow) and non-use(stock) value and when the predator can inflict transboundary damages. We then use new data from the US Mountain West to show how a particular feedback approach—linear parameter-varying(LPV) control—can be utilized in this context. Our LPV model is able to quantify the cost of managing disturbances that inevitably arise as a manager tries to keep the actual path of the system "close" to its optimum. The results suggest management strategies in mountain ecosystems that feature large, mammalian carnivores. 展开更多
关键词 Feedback control linear parameter Optimal vontrol Robust control PREDATOR-PREY Recreational hunting
下载PDF
Identification of LPV Models with Non-uniformly Spaced Operating Points by Using Asymmetric Gaussian Weights 被引量:1
6
作者 游杰 杨秦敏 +1 位作者 卢建刚 孙优贤 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期795-798,共4页
In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure. It is not required to select operati... In this paper, asymmetric Gaussian weighting functions are introduced for the identification of linear parameter varying systems by utilizing an input-output multi-model structure. It is not required to select operating points with uniform spacing and more flexibility is achieved. To verify the effectiveness of the proposed approach, several weighting functions, including linear, Gaussian and asymmetric Gaussian weighting functions, are evaluated and compared. It is demonstrated through simulations with a continuous stirred tank reactor model that the oroposed aonroach nrovides more satisfactory aonroximation. 展开更多
关键词 IDENTIFICATION Multi-model linear parameter varying system Asymmetric Gaussian weight Continuous stirred tank reactor
下载PDF
HOSVD-based LPV modeling and mixed robust H_2/H_∞ control design for air-breathing hypersonic vehicle 被引量:5
7
作者 Wei Jiang Hongli Wang +1 位作者 Jinghui Lu Zheng Xie 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第1期183-191,共9页
This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(H... This paper focuses on synthesizing a mixed robust H_2/H_∞ linear parameter varying(LPV) controller for the longitudinal motion of an air-breathing hypersonic vehicle via a high order singular value decomposition(HOSVD) approach.The design of hypersonic flight control systems is highly challenging due to the enormous complexity of the vehicle dynamics and the presence of significant uncertainties.Motivated by recent results on both LPV control and tensor-product(TP) model transformation approach,the velocity and altitude tracking control problems for the air-breathing hypersonic vehicle is reduced to that of a state feedback stabilizing controller design for a polytopic LPV system with guaranteed performances.The controller implementation is converted into a convex optimization problem with parameterdependent linear matrix inequalities(LMIs) constraints,which is intuitively tractable using LMI control toolbox.Finally,numerical simulation results demonstrate the effectiveness of the proposed approach. 展开更多
关键词 high order singular value decomposition(HOSVD) linear parameter varying(LPV) tensor product model transformation linear matrix inequality(LMI) air-breathing hypersonic vehicle
下载PDF
LVP Modeling and Dynamic Characteristics Prediction of A Hydraulic Power Unit in Deep-Sea 被引量:1
8
作者 曹学鹏 叶敏 +2 位作者 邓斌 张翠红 俞祖英 《China Ocean Engineering》 SCIE EI CSCD 2013年第1期17-32,共16页
A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tes... A hydraulic power unit (HPU) is the driving "heart" of deep-sea working equipment. It is critical to predict its dynamic performances in deep-water before being immerged in the seawater, while the experimental tests by simulating deep-sea environment have many disadvantages, such as expensive cost, long test cycles, and difficult to achieve low-temperature simulation, which is only used as a supplementary means for confirmatory experiment. This paper proposes a novel theoretical approach based on the linear varying parameters (LVP) modeling to foresee the dynamic performances of the driving unit. Firstly, based on the varying environment features, dynamic expressions of the compressibility and viscosity of hydranlic oil are derived to reveal the fluid performances changing. Secondly, models of hydraulic system and electrical system are accomplished respectively through studying the control process and energy transfer, and then LVP models of the pressure and flow rate control is obtained through the electro-hydraulic models integration. Thirdly, dynamic characteristics of HPU are obtained by the model simulating within bounded closed sets of varying parameters. Finally, the developed HPU is tested in a deep-sea imitating hull, and the experimental results are well consistent with the theoretical analysis outcomes, which clearly declare that the LVP modeling is a rational way to foresee dynamic performances of HPU. The research approach and model analysis results can be applied to the predictions of working properties and product designs for other deep-sea hydraulic pump. 展开更多
关键词 hydraulic power unit (HPLO linear varying parameters (L VP) modeling dynamic viscosity characteristics prediction
下载PDF
Robust H_∞ control for uncertain Markovian jump systems with mixed delays 被引量:1
9
作者 R Saravanakumar M Syed Ali 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期108-113,共6页
We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite... We scrutinize the problem of robust H∞control for a class of Markovian jump uncertain systems with interval timevarying and distributed delays. The Markovian jumping parameters are modeled as a continuous-time finite-state Markov chain. The main aim is to design a delay-dependent robust H∞control synthesis which ensures the mean-square asymptotic stability of the equilibrium point. By constructing a suitable Lyapunov–Krasovskii functional(LKF), sufficient conditions for delay-dependent robust H∞control criteria are obtained in terms of linear matrix inequalities(LMIs). The advantage of the proposed method is illustrated by numerical examples. The results are also compared with the existing results to show the less conservativeness. 展开更多
关键词 linear matrix inequality Lyapunov method Markovian jumping parameters robust H∞ control
下载PDF
LPV Flight Dynamics Modeling for Turbulent Wind Special Flight Analysis
10
作者 Gao Zhenxing Hu Jinshuo 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2018年第3期464-471,共8页
A linear parameter varying(LPV)flight dynamics model(FDM)is proposed to cater for atmospheric disturbance analysis in special flight conditions.A novel FDM which is capable of addressing the influence of turbulent win... A linear parameter varying(LPV)flight dynamics model(FDM)is proposed to cater for atmospheric disturbance analysis in special flight conditions.A novel FDM which is capable of addressing the influence of turbulent wind is derived under the wind frame.An affine parameter dependent LPV model with wind effects is built based on function substitution method.The optimal solution for the decomposing function of the LPV FDM is obtained by genetic algorithm(GA).The analysis of dynamic response indicates that the genetic-optimized LPV FDM approximates the nonlinear FDM evidently,since it identifies the instantaneous dynamics and flight states varying in a wide range.The simulations of approach and landing against wind shear show that the genetic-optimized LPV FDM captures the instantaneous dynamic response when flying through turbulent wind,indicating that the LPV model can be further applied to turbulent wind special flight analysis and control law design. 展开更多
关键词 linear parameter varying function substitution genetic algorithm wind shear atmospheric disturbance
下载PDF
Identification of LPV system using locally weighted technique
11
作者 ZENG Jiu-sun GAO Chuan-hou LUO Shi-hua 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2010年第4期411-419,共9页
The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giv... The problem of linear parameter varying (LPV) system identification is considered based on the locally weighted technique which provides estimation of the LPV model parameters at each distinct data time point by giving large weights to measurements that are "close" to the current time point and small weights to measurements "far" from the current time point. Issues such as choice of distance function, weighting function and bandwidth selection are discussed. The developed method is easy to implement and simulation results illustrate its efficiency. 展开更多
关键词 linear parameter varying system locally weighted technique identification.
下载PDF
A Shortest Path Algorithm for Multi-stage Network with Linear Parameter 被引量:2
12
作者 GAOTai-ping WANGChuan-long 《Systems Science and Systems Engineering》 CSCD 2002年第3期341-344,共4页
In this paper, we give the shortest path algorithm for multi-stage network with a linear parameter, and study its complexity.
关键词 the shortest path algorithm multi-stage network linear parameter
原文传递
The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal 被引量:13
13
作者 CHEN Yanli GUO Lianghao GONG Zaixiao 《Chinese Journal of Acoustics》 CSCD 2017年第1期70-86,共17页
A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is r... A concise fractional Fourier transform (CFRFT) is proposed to detect the linear frequency-modulated (LFM) signal with low signal to noise ratio (SNR). The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different an- gles using chirp multiplication and Fourier transform (FT). For LFM signal which distributes as a straight line in time-frequency plane, the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR, thus the LFM signal of low SNR can be de- tected. Meanwhile, the location of the peak value relates to the parameters of the LFM signal. Numerical simulations and experimental results show that, the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately. Compared with the conventional fractional Fourier transform (FRFT), the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal. 展开更多
关键词 LFM FRFT The concise fractional Fourier transform and its application in detection and parameter estimation of the linear frequency-modulated signal
原文传递
Classical state feedback controller for nonlinear systems using mean value theorem: closed Ioop-FOC of PMSM motor application
14
作者 Abrar ALLAG Abdelhamid BENAKCHA +2 位作者 Meriem ALLAG Ismail ZEIN Mohamed Yacine AYAD 《Frontiers in Energy》 SCIE CSCD 2015年第4期413-425,共13页
The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the different... The problem of state feedback controllers for a class of Takagi-Sugeno (T-S) Lipschitz nonlinear systems is investigated. A simple systematic and useful synthesis method is proposed based on the use of the differential mean value theorem (DMVT) and convex theory. The proposed design approach is based on the mean value theorem (MVT) to express the nonlinear error dynamics as a convex combination of known matrices with time varying coefficients as linear parameter varying (LPV) systems. Using the Lyapunov theory, stability conditions are obtained and expressed in terms of linear matrix inequalities (LMIs). The controller gains are then obtained by solving linear matrix inequalities. The effectiveness of the proposed approach for closed loop-field oriented control (CL-FOC) of permanent magnet synchronous machine (PMSM) drives is demonstrated through an illustrative simulation for the proof of these approaches. Furthermore, an extension for controller design with parameter uncertainties and perturbation performance is discussed. 展开更多
关键词 Takagi-Sugeno (T-S) fuzzy systems sectornonlinearity nonlinear controller linear matrix inequality(LMI) approach differential mean value theorem (DMVT) field oriented control (FOC) linear parameter varying(LPV)
原文传递
Adaptive bolus chasing computed tomography angiography by a local linear time and space parameter varying model:modeling,control,identification,and experimental results
15
作者 Zhijun CAI Ge WANG Er-Wei BAI 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2010年第2期119-127,共9页
A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and co... A high contrast to noise ratio(CNR)is always desirable for contrast-enhanced computed tomography angiography(CTA).To ensure a high CNR of the vascular images in CTA and potentially reduce the radiation exposure and contrast usage,an adaptive bolus chasing method is proposed and evaluated compared to the existing constant-speed method.The proposed method is based on a local time and space parameter varying model of the contrast bolus.Optimal scan time for the next segment of the vasculature is estimated and predicted in real time and guides the computed tomography(CT)scanner table movement that guarantees that each segment of the vasculature is scanned with the maximum possible enhancement.Simulations and experimental results show that the proposed bolus chasing method outperforms the conventional constant-speed method substantially. 展开更多
关键词 adaptive control bolus chasing computed tomography angiography(CTA) local linear time and space parameter varying model
原文传递
Design of Adaptive Robust Guaranteed Cost Controller for Wind Power Generator 被引量:2
16
作者 Zhong-Qiang Wu Jian-Ping Xie 《International Journal of Automation and computing》 EI CSCD 2013年第2期111-117,共7页
According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is es... According to the increasing requirement of the wind energy utilization and the dynamic stability in the variable speed variable pitch wind power generation system, a linear parameter varying (LPV) system model is established and a new adaptive robust guaranteed cost controller (AGCC) is proposed in this paper. First, the uncertain parameters of the system are estimated by using the adaptive method, then the estimated uncertain parameters and robust guaranteed cost control method are used to design a state feedback controller. The controller s feedback gain is obtained by solving a set of linear matrix inequality (LMI) constraints, such that the controller can meet a quadratic performance evaluation criterion. The simulation results show that we can realize the goal of maximum wind energy capture in low wind speed by the optimal torque control and constant power control in high wind speed by variable pitch control with good dynamic characteristics, robustness and the ability of suppressing disturbance. 展开更多
关键词 Wind power generator linear parameters varying (LPV) system adaptive control robust control guaranteed cost control
原文传递
A Robust Control Strategy to Improve Transient Stability for AC-DC Interconnected Power System with Wind Farms 被引量:9
17
作者 Qian Hui Jinlu Yang +3 位作者 Xia Yang Zhe Chen Yan Li Yun Teng 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2019年第2期259-265,共7页
In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind f... In view of the variable parameters that affect the transient stability of electromagnetic torque and mechanical torque balance in AC-DC system,and the uncertainty of wind power in large-scale interconnection of wind farm.This paper proposes a linear parameter varying(LPV)robust feedback control method for transient stability of interconnected systems.The proposed LPV robust feedback control method uses the DC channel power control and the mechanical power in the interconnected system as the control target to improve the transient stability of the interconnected system with wind farm channel.Firstly,aiming at the strong nonlinear characteristics of the interconnected system,the power balance and the wind power output uncertainty in the transient process,the transient process is designed as a linear model of variable parameters.Then,the H∞robust output feedback controller is designed according to the LPV model.The transient stability control strategy topology and transfer function of the interconnected system are proposed.Finally,the proposed scheme is verified by an interconnected system formed by four equal-value grids through AC and DC lines in a digital simulation platform.The results show that the LPV robust feedback control model proposed in this paper has better response characteristics and transient stability control effects for interconnected systems with wind power weak sendingend system. 展开更多
关键词 AC/DC transmission interconnected power systems linear parameter varying robust control sending-end system transient stability wind power generation
原文传递
On modeling and control of a flexible air-breathing hypersonic vehicle based on LPV method 被引量:12
18
作者 Changyin SUN Yiqing HUANG +1 位作者 Chengshan QIAN Li WANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第1期56-68,共13页
This article develops a polytopic linear pa- rameter varying (LPV) model and presents a non-fragile H2 gain-scheduled control for a flexible air-breathing hypersonic vehicle (FAHV). First, the polytopic LPV model ... This article develops a polytopic linear pa- rameter varying (LPV) model and presents a non-fragile H2 gain-scheduled control for a flexible air-breathing hypersonic vehicle (FAHV). First, the polytopic LPV model of the FAHV can be obtained by using Jacobian linearization and tensor-product (TP) model transfor- mation approach, simulation verification illustrates that the polytopic LPV model captures the local nonlinear- ities of the original nonlinear system. Second, based on the developed polytopic LPV model, a non-fragile gain- scheduled control method is proposed in order to reduce the fragility encountered in controller implementation, a convex optimisation problem with linear matrix in- equalities (LMIs) constraints is formulated for designing a velocity and altitude tracking controller, which guar- antees//2 control performance index. Finally, numerical simulations have demonstrated the effectiveness of the proposed approach. 展开更多
关键词 linear parameter varying (LPV) non- fragile gain-scheduled control flexible air-breathing hy- personic vehicle (FAHV)
原文传递
Gain self-scheduled H_∞ control for morphing aircraft in the wing transition process based on an LPV model 被引量:40
19
作者 Yue Ting Wang Lixin Ai Junqiang 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2013年第4期909-917,共9页
This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic... This article investigates gain self-scheduled H 1 robust control system design for a tailless fold- ing-wing morphing aircraft in the wing shape varying process. During the wing morphing phase, the aircraft's dynamic response will be governed by time-varying aerodynamic forces and moments. Nonlinear dynamic equations of the morphing aircraft are linearized by using Jacobian linearization approach, and a linear parameter varying (LPV) model of the morphing aircraft in wing folding is obtained. A multi-loop controller for the morphing aircraft is formulated to guarantee stability for the wing shape transition process. The proposed controller uses a set of inner-loop gains to provide stability using classical techniques, whereas a gain self-scheduled H 1 outer-loop controller is devised to guarantee a specific level of robust stability and performance for the time-varying dynamics. The closed-loop simulations show that speed and altitude vary slightly during the whole wing folding process, and they converge rapidly after the process ends. This proves that the gain self-scheduled H 1 robust controller can guarantee a satisfactory dynamic performance for the morphing aircraft during the whole wing shape transition process. Finally, the flight control system's robustness for the wing folding process is verified according to uncertainties of the aerodynamic parameters in the nonlinear model. 展开更多
关键词 Gain self-scheduled H 1 robust control linear parameter varying Morphing aircraft Wing transition
原文传递
Direct thrust control for multivariable turbofan approach 被引量:4
20
作者 Yiyang ZHU Jinquan HUANG +1 位作者 Muxuan PAN Wenxiang ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第6期125-136,共12页
A novel turbofan Direct Thrust Control(DTC)architecture based on Linear ParameterVarying(LPV)approach for a two-spool turbofan engine thrust control is proposed in this paper.Instead of transforming thrust command to ... A novel turbofan Direct Thrust Control(DTC)architecture based on Linear ParameterVarying(LPV)approach for a two-spool turbofan engine thrust control is proposed in this paper.Instead of transforming thrust command to shaft speed command and pressure ratio command,the thrust will be directly controlled by an optimal controller with two control variables.LPV model of the engine is established for the designing of thrust estimator and controller.A robust LPV H∞filter is introduced to estimate the unmeasurable thrust according to measurable engine states.The thrust estimation error system is proved to be Affinely Quadratically Stable(AQS)in the whole parameter box with a prescribed H∞performance indexγ.Due to the existence of overdetermined equations,the solving of controller parameters is a multi-solution problem.Therefore,Particle Swarm Optimization(PSO)algorithm is used to optimize the controller parameters to obtain satisfactory control performance based on the engine’s LPV model.Numerical simulations show that the thrust estimator can acquire smooth and accurate estimating results when sensor noise exists.The optimal controller can receive desired control performance both in steady and transition control tasks within the engine working states above the idle,verifying the effectiveness of the proposed DTC architecture’s application in thrust direct control problem. 展开更多
关键词 Turbofan engine Direct thrust control linear Parameter Varying(LPV)approach Particle Swarm Optimization(PSO) Robust LPV H∞filter
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部