Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonline...Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonlinear, and large time-delay characteristics. Support vector machine( SVM) has been successfully based on small data. But its accuracy is not high,in contrast,if the number of data and dimension of feature increase,the training time of model will increase dramatically. In this paper,a linear SVM was applied combing with cyclic coordinate descent( CCD) to solving big data regression. It was mathematically strictly proved and validated by simulation. Meanwhile,real data were conducted to prove the linear SVM model's effect. Compared with other methods for big data in simulation, this algorithm has apparent advantage not only in fast modeling but also in high fitness.展开更多
Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the al...Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches.展开更多
With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques h...With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques have proven to be viable alternatives,but the lack of efficient and optimal practices for irrigation and nutrient supply limits its applications on a large-scale commercial basis.The main purpose of this research was to develop statistical methods and Machine Learning algorithms to regulate nutrient concentrations in aquaponic irrigation water based on plant needs,for achieving optimal plant growth and promoting broader adoption of aquaponic culture on a commercial scale.One of the key challenges to developing these algorithms is the sparsity of data which requires the use of Bolstered error estimation approaches.In this paper,several linear and non-linear algorithms trained on relatively small datasets using Bolstered error estimation techniques were evaluated,for selecting the best method in making decisions regarding the regulation of nutrients in hydroponic environments.After repeated tests on the dataset,it was decided that Semi-Bolstered Resubstitution Error estimation technique works best in our case using Linear Support Vector Machine as the classifier with the value of penalty parameter set to one.A set of recommended rules have been prescribed as a Decision Support System,using the output of the Machine Learning algorithm,which have been tested against the results of the baseline model.Further,the positive impact of the recommended nutrient concentrationson plant growth in aquaponic environments has been elaborately discussed.展开更多
In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) ...In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model.展开更多
基金Nantong Research Program of Application Foundation,China(No.BK2012030)Key Project of Science and Technology Commission of Shanghai Municipality,China(No.10JC1405000)
文摘Temperature prediction plays an important role in ring die granulator control,which can influence the quantity and quality of production. Temperature prediction modeling is a complicated problem with its MIMO, nonlinear, and large time-delay characteristics. Support vector machine( SVM) has been successfully based on small data. But its accuracy is not high,in contrast,if the number of data and dimension of feature increase,the training time of model will increase dramatically. In this paper,a linear SVM was applied combing with cyclic coordinate descent( CCD) to solving big data regression. It was mathematically strictly proved and validated by simulation. Meanwhile,real data were conducted to prove the linear SVM model's effect. Compared with other methods for big data in simulation, this algorithm has apparent advantage not only in fast modeling but also in high fitness.
文摘Intelligent Intrusion Detection System(IIDS)for networks provide a resourceful solution to network security than conventional intrusion defence mechanisms like a firewall.The efficiency of IIDS highly relies on the algorithm performance.The enhancements towards these methods are utilized to enhance the classification accuracy and diminish the testing and training time of these algorithms.Here,a novel and intelligent learning approach are known as the stabbing of intrusion with learning framework(SILF),is proposed to learn the attack features and reduce the dimensionality.It also reduces the testing and training time effectively and enhances Linear Support Vector Machine(l-SVM).It constructs an auto-encoder method,an efficient learning approach for feature construction unsupervised manner.Here,the inclusive certified signature(ICS)is added to the encoder and decoder to preserve the sensitive data without being harmed by the attackers.By training the samples in the preliminary stage,the selected features are provided into the classifier(lSVM)to enhance the prediction ability for intrusion and classification accuracy.Thus,the model efficiency is learned linearly.The multi-classification is examined and compared with various classifier approaches like conventional SVM,Random Forest(RF),Recurrent Neural Network(RNN),STL-IDS and game theory.The outcomes show that the proposed l-SVM has triggered the prediction rate by effectual testing and training and proves that the model is more efficient than the traditional approaches in terms of performance metrics like accuracy,precision,recall,F-measure,pvalue,MCC and so on.The proposed SILF enhances network intrusion detection and offers a novel research methodology for intrusion detection.Here,the simulation is done with a MATLAB environment where the proposed model shows a better trade-off compared to prevailing approaches.
文摘With the recent trends in urban agriculture and climate change,there is an emerging need for alternative plant culture techniques where dependence on soil can be eliminated.Hydroponic and aquaponic growth techniques have proven to be viable alternatives,but the lack of efficient and optimal practices for irrigation and nutrient supply limits its applications on a large-scale commercial basis.The main purpose of this research was to develop statistical methods and Machine Learning algorithms to regulate nutrient concentrations in aquaponic irrigation water based on plant needs,for achieving optimal plant growth and promoting broader adoption of aquaponic culture on a commercial scale.One of the key challenges to developing these algorithms is the sparsity of data which requires the use of Bolstered error estimation approaches.In this paper,several linear and non-linear algorithms trained on relatively small datasets using Bolstered error estimation techniques were evaluated,for selecting the best method in making decisions regarding the regulation of nutrients in hydroponic environments.After repeated tests on the dataset,it was decided that Semi-Bolstered Resubstitution Error estimation technique works best in our case using Linear Support Vector Machine as the classifier with the value of penalty parameter set to one.A set of recommended rules have been prescribed as a Decision Support System,using the output of the Machine Learning algorithm,which have been tested against the results of the baseline model.Further,the positive impact of the recommended nutrient concentrationson plant growth in aquaponic environments has been elaborately discussed.
文摘In this work, two chemometrics methods are applied for the modeling and prediction of electrophoretic mobilities of some organic and inorganic compounds. The successive projection algorithm, feature selection (SPA) strategy, is used as the descriptor selection and model development method. Then, the support vector machine (SVM) and multiple linear regression (MLR) model are utilized to construct the non-linear and linear quantitative structure-property relationship models. The results obtained using the SVM model are compared with those obtained using MLR reveal that the SVM model is of much better predictive value than the MLR one. The root-mean-square errors for the training set and the test set for the SVM model were 0.1911 and 0.2569, respectively, while by the MLR model, they were 0.4908 and 0.6494, respectively. The results show that the SVM model drastically enhances the ability of prediction in QSPR studies and is superior to the MLR model.