期刊文献+
共找到134篇文章
< 1 2 7 >
每页显示 20 50 100
Experimental and Simulation Analysis of Two-Tone and Three-Tone Photodetector Linearity Characterizing Systems 被引量:1
1
作者 费嘉瑞 黄永清 +3 位作者 刘悠欣 刘凯 段晓峰 任晓敏 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期110-113,共4页
Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup compone... Two measurement techniques are investigated to characterize photodetector linearity. A model for the two-tone and three-tone photodetector systems is developed to thoroughly investigate the influences of setup components on the measurement results. We demonstrate that small bias shifts from the quadrature point of the modulator will induce deviation into measurement results of the two-tone system, and the simulation results correspond well to experimental and calculation results. 展开更多
关键词 OIP Experimental and Simulation analysis of Two-Tone and Three-Tone Photodetector linearity Characterizing Systems IMD dBm
下载PDF
Toward Circumventing Collinearity Effect in Nonlinear Spectral Mixture Analysis by Using a Spectral Shape Measure
2
作者 Wei Yang Akihiko Kondoh 《Advances in Remote Sensing》 2016年第3期183-191,共9页
Nonlinear spectral mixture analysis (NSMA) is a widely used unmixing algorithm. It can fit the mixed spectra adequately, but collinearity effect among true and virtual endmembers will decrease the retrieval accuracies... Nonlinear spectral mixture analysis (NSMA) is a widely used unmixing algorithm. It can fit the mixed spectra adequately, but collinearity effect among true and virtual endmembers will decrease the retrieval accuracies of endmember fractions. Use of linear spectral mixture analysis (LSMA) can effectively reduce the degree of collinearity in the NSMA. However, the inadequate modeling of mixed spectra in the LSMA will also yield retrieval errors, especially for the cases where the multiple scattering is not ignorable. In this study, a generalized spectral unmixing scheme based on a spectral shape measure, i.e. spectral information divergence (SID), was applied to overcome the limitations of the conventional NSMA and LSMA. Two simulation experiments were undertaken to test the performances of the SID, LSMA and NSMA in the mixture cases of treesoil, tree-concrete and tree-grass. Results demonstrated that the SID yielded higher accuracies than the LSMA for almost all the mixture cases in this study. On the other hand, performances of the SID method were comparable with the NSMA for the tree-soil and tree-grass mixture cases, but significantly better than the NSMA for the tree-concrete mixture case. All the results indicate that the SID method is fairly effective to circumvent collinearity effect within the NSMA, and compensate the inadequate modeling of mixed spectra within the LSMA. 展开更多
关键词 Nonlinear Spectral Mixture analysis Linear Spectral Mixture analysis COLlinearity Spectral Information Divergence (SID)
下载PDF
Modified algorithm of principal component analysis for face recognition 被引量:3
3
作者 罗琳 邹采荣 仰枫帆 《Journal of Southeast University(English Edition)》 EI CAS 2006年第1期26-30,共5页
In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algori... In principal component analysis (PCA) algorithms for face recognition, to reduce the influence of the eigenvectors which relate to the changes of the illumination on abstract features, a modified PCA (MPCA) algorithm is proposed. The method is based on the idea of reducing the influence of the eigenvectors associated with the large eigenvalues by normalizing the feature vector element by its corresponding standard deviation. The Yale face database and Yale face database B are used to verify the method. The simulation results show that, for front face and even under the condition of limited variation in the facial poses, the proposed method results in better performance than the conventional PCA and linear discriminant analysis (LDA) approaches, and the computational cost remains the same as that of the PCA, and much less than that of the LDA. 展开更多
关键词 face recognition principal component analysis linear discriminant analysis
下载PDF
Direct linear discriminant analysis based on column pivoting QR decomposition and economic SVD
4
作者 胡长晖 路小波 +1 位作者 杜一君 陈伍军 《Journal of Southeast University(English Edition)》 EI CAS 2013年第4期395-399,共5页
A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directl... A direct linear discriminant analysis algorithm based on economic singular value decomposition (DLDA/ESVD) is proposed to address the computationally complex problem of the conventional DLDA algorithm, which directly uses ESVD to reduce dimension and extract eigenvectors corresponding to nonzero eigenvalues. Then a DLDA algorithm based on column pivoting orthogonal triangular (QR) decomposition and ESVD (DLDA/QR-ESVD) is proposed to improve the performance of the DLDA/ESVD algorithm by processing a high-dimensional low rank matrix, which uses column pivoting QR decomposition to reduce dimension and ESVD to extract eigenvectors corresponding to nonzero eigenvalues. The experimental results on ORL, FERET and YALE face databases show that the proposed two algorithms can achieve almost the same performance and outperform the conventional DLDA algorithm in terms of computational complexity and training time. In addition, the experimental results on random data matrices show that the DLDA/QR-ESVD algorithm achieves better performance than the DLDA/ESVD algorithm by processing high-dimensional low rank matrices. 展开更多
关键词 direct linear discriminant analysis column pivoting orthogonal triangular decomposition economic singular value decomposition dimension reduction feature extraction
下载PDF
Balanced multiple weighted linear discriminant analysis and its application to visual process monitoring 被引量:1
5
作者 Weipeng Lu Xuefeng Yan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期128-137,共10页
Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear d... Visual process monitoring is important in complex chemical processes.To address the high state separation of industrial data,we propose a new criterion for feature extraction called balanced multiple weighted linear discriminant analysis(BMWLDA).Then,we combine BMWLDA with self-organizing map(SOM)for visual monitoring of industrial operation processes.BMWLDA can extract the discriminative feature vectors from the original industrial data and maximally separate industrial operation states in the space spanned by these discriminative feature vectors.When the discriminative feature vectors are used as the input to SOM,the training result of SOM can differentiate industrial operation states clearly.This function improves the performance of visual monitoring.Continuous stirred tank reactor is used to verify that the class separation performance of BMWLDA is more effective than that of traditional linear discriminant analysis,approximate pairwise accuracy criterion,max–min distance analysis,maximum margin criterion,and local Fisher discriminant analysis.In addition,the method that combines BMWLDA with SOM can effectively perform visual process monitoring in real time. 展开更多
关键词 Linear discriminant analysis Process monitoring Self-organizing map Feature extraction Continuous stirred tank reactor process
下载PDF
Moving-window bis-correlation coefficients method for visible and near-infrared spectral discriminant analysis with applications 被引量:1
6
作者 Lijun Yao Weiqun Xu +1 位作者 Tao Pan Jiemei Chen 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第2期65-77,共13页
The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The we... The moving window bis corelation coefficients(MW BiCC)was proposed and employed for the discriminant analysis of transgenic sugarcane leaves and B-thalassemia with visible and near-infrared(Vis NIR)spectroscopy.The well-performed moving window principal component analysis linear discriminant analysis(MWPCA-LDA)was also conducted for comparison.A total of 306 transgenic(positive)and 150 nont ransgenic(negative)leave samples of sugarcane were collected and divided to calibration,prediction,and validation.The diffuse reflection spectra were corected using Savitzky-Golay(SG)smoothing with first-order derivative(d=1),third-degree polynomial(p=3)and 25 smpothing points(m=25).The selected waveband was 736-1054nm with MW-BiCC,and the positive and negative validation recognition rates(V_REC^(+),VREC^(-))were 100%,98.0%,which achieved the same effect as MWPCA-LDA.Another example,the 93 B-thalassemia(positive)and 148 nonthalassemia(negative)of human hemolytic samples were colloctod.The transmission spectra were corrected using SG smoothing withd=1,p=3 and m=53.Using M W-BiCC,many best wavebands were selected(e.g.,1116-1146,17941848 and 22842342nm).The V_REC^(+)and V_REC^(-)were both 100%,which achieved the same effect as MW-PCA-LDA.Importantly,the BICC only required ca lculating correlation cofficients between the spectrum of prediction sample and the average spectra of two types of calibration samples.Thus,BiCC was very simple in algorithm,and expected to obtain more applications.The results first confirmed the feasibility of distinguishing B-thalassemia and normal control samples by NIR spectroscopy,and provided a promising simple tool for large population thalassemia screening. 展开更多
关键词 Visible and near infrared spectroscopic discriminant analysis transgenic sugarcane leaves B-thalassemia moving-window bis-correlation cofficients moving-window principal component analysis linear discriminant analysis.
下载PDF
Machine Learning-based USD/PKR Exchange Rate Forecasting Using Sentiment Analysis of Twitter Data 被引量:1
7
作者 Samreen Naeem Wali Khan Mashwani +4 位作者 Aqib Ali M.Irfan Uddin Marwan Mahmoud Farrukh Jamal Christophe Chesneau 《Computers, Materials & Continua》 SCIE EI 2021年第6期3451-3461,共11页
This study proposes an approach based on machine learning to forecast currency exchange rates by applying sentiment analysis to messages on Twitter(called tweets).A dataset of the exchange rates between the United Sta... This study proposes an approach based on machine learning to forecast currency exchange rates by applying sentiment analysis to messages on Twitter(called tweets).A dataset of the exchange rates between the United States Dollar(USD)and the Pakistani Rupee(PKR)was formed by collecting information from a forex website as well as a collection of tweets from the business community in Pakistan containing finance-related words.The dataset was collected in raw form,and was subjected to natural language processing by way of data preprocessing.Response variable labeling was then applied to the standardized dataset,where the response variables were divided into two classes:“1”indicated an increase in the exchange rate and“−1”indicated a decrease in it.To better represent the dataset,we used linear discriminant analysis and principal component analysis to visualize the data in three-dimensional vector space.Clusters that were obtained using a sampling approach were then used for data optimization.Five machine learning classifiers—the simple logistic classifier,the random forest,bagging,naïve Bayes,and the support vector machine—were applied to the optimized dataset.The results show that the simple logistic classifier yielded the highest accuracy of 82.14%for the USD and the PKR exchange rates forecasting. 展开更多
关键词 Machine learning exchange rate sentiment analysis linear discriminant analysis principal component analysis simple logistic
下载PDF
Pattern analysis of a linear dune field on the northern margin of Qarhan Salt Lake,northwestern China 被引量:6
8
作者 LI Jiyan DONG Zhibao +4 位作者 QIAN Guangqiang ZHANG Zhengcai LUO Wanyin LU Junfeng WANG Meng 《Journal of Arid Land》 SCIE CSCD 2016年第5期670-680,共11页
In terms of formation mechanisms of linear dunes,there are open arguments for their widespread distribution and multi-morphological diversities.In order to clarify the formation mechanism of linear dunes of Qarhan Sal... In terms of formation mechanisms of linear dunes,there are open arguments for their widespread distribution and multi-morphological diversities.In order to clarify the formation mechanism of linear dunes of Qarhan Salt Lake,we used pattern analysis method to analyze the statistical characteristics and spatial variation of their pattern parameters.Except at the west-northwest margin,the pattern parameters showed regular spatial variation from the up-middle part towards the downwind end of the dune field.Based on the cumulative probability plots for inter-crest spacing and crest length,we divided the linear dunes into three groups,which corresponding to the three evolution stages of these dunes.The first group comprises erosional relics,with shorter crests,smaller inter-crest spacing and more random dune orientation.The second group comprises dunes whose sand supply is just sufficient to maintain stability and these dunes are approaching the net erosion stage.The crest length and inter-crest spacing of these dunes are much larger than those of the first group,and dune orientation is closer to the resultant drift direction (RDD) .The last group comprises linear dunes that are still undergoing vertical accretion and longitudinal elongation,which follows the RDD of the modern wind regime.The presence of regular spatial variation of pattern parameters and a similar geometry with the vegetated linear dunes suggest that deposition and erosion coexist in the development and evolution of linear dunes of Qarhan Salt Lake,i.e.deposition predominates at the downwind end of linear dunes in the vertical accretion and longitudinal elongation stage,whereas erosion mainly occurs at the upwind end of linear dunes in the degradation stage.Therefore,the formation mechanism of linear dunes in Qarhan Salt Lake can be reasonably explained by the combination of depositional and erosional theories. 展开更多
关键词 pattern analysis self-organization linear dunes dune field Qarhan Salt Lake Qaidam Basin
下载PDF
Kernel Model Applied in Kernel Direct Discriminant Analysis for the Recognition of Face with Nonlinear Variations 被引量:1
9
作者 李粉兰 徐可欣 《Transactions of Tianjin University》 EI CAS 2006年第2期147-152,共6页
A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate it... A kernel-based discriminant analysis method called kernel direct discriminant analysis is employed, which combines the merit of direct linear discriminant analysis with that of kernel trick. In order to demonstrate its better robustness to the complex and nonlinear variations of real face images, such as illumination, facial expression, scale and pose variations, experiments are carried out on the Olivetti Research Laboratory, Yale and self-built face databases. The results indicate that in contrast to kernel principal component analysis and kernel linear discriminant analysis, the method can achieve lower (7%) error rate using only a very small set of features. Furthermore, a new corrected kernel model is proposed to improve the recognition performance. Experimental results confirm its superiority (1% in terms of recognition rate) to other polynomial kernel models. 展开更多
关键词 face recognition kernel method: kernel direct discriminant analysis direct linear discriminant analysis
下载PDF
Face Recognition Using Kernel Discriminant Analysis 被引量:1
10
作者 张燕昆 Gu +2 位作者 Xuefeng Liu Chongqing 《High Technology Letters》 EI CAS 2002年第4期43-46,共4页
Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems,... Linear discrimiant analysis (LDA) has been used in face recognition. But it is difficult to handle the high nonlinear problems, such as changes of large viewpoint and illumination. In order to overcome these problems, kernel discriminant analysis for face recognition is presented. This approach adopts the kernel functions to replace the dot products of nonlinear mapping in the high dimensional feature space, and then the nonlinear problem can be solved in the input space conveniently without explicit mapping. Two face databases are given. 展开更多
关键词 face recognition linear discriminant analysis kernel discriminant analysis
下载PDF
Linear Buckling Analysis of the HT-7U Vacuum Vessel 被引量:1
11
作者 宋云涛 姚达毛 +1 位作者 武松涛 翁佩德 《Plasma Science and Technology》 SCIE EI CAS CSCD 2000年第2期245-249,共5页
The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the an... The vacuum vessel of the HT-7U superconducting Tokamak is designed as an allmetal welded double-wall structure with a number of radial and vertical ports. With characteristicsof ultrahigh vacuum and thin shell, the analysis on stability is very important to the design. Toachieve a successful final design, a threedimension buckling model has been performed using thefinite element program CoSMOS/M2.0. For all the cases having been considered, a 1/16 segmentof the whole toric shell are used to calculate the linear critical buckling load (Pc.,,) under auniform and nonwhform external pressure. As expected, the structure has a good capability ofwithstanding the applied loads. 展开更多
关键词 HT Linear Buckling analysis of the HT-7U Vacuum Vessel
下载PDF
Using Linear Regression Analysis and Defense in Depth to Protect Networks during the Global Corona Pandemic 被引量:1
12
作者 Rodney Alexander 《Journal of Information Security》 2020年第4期261-291,共31页
The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during th... The purpose of this research was to determine whether the Linear Regression Analysis can be effectively applied to the prioritization of defense-in-depth security tools and procedures to reduce cyber threats during the Global Corona Virus Pandemic. The way this was determined or methods used in this study consisted of scanning 20 peer reviewed Cybersecurity Articles from prominent Cybersecurity Journals for a list of defense in depth measures (tools and procedures) and the threats that those measures were designed to reduce. The methods further involved using the Likert Scale Model to create an ordinal ranking of the measures and threats. The defense in depth tools and procedures were then compared to see whether the Likert scale and Linear Regression Analysis could be effectively applied to prioritize and combine the measures to reduce pandemic related cyber threats. The results of this research reject the H0 null hypothesis that Linear Regression Analysis does not affect the relationship between the prioritization and combining of defense in depth tools and procedures (independent variables) and pandemic related cyber threats (dependent variables). 展开更多
关键词 Information Assurance Defense in Depth Information Technology Network Security CYBERSECURITY Linear Regression analysis PANDEMIC
下载PDF
CFD Analysis and Optimization of Automobile Radiator based on STAR-CCM+ 被引量:4
13
作者 XU Xiao-wen SUN Hou-huan +1 位作者 HUA Guang-sheng YIN Zhen-hua 《International Journal of Plant Engineering and Management》 2017年第4期212-221,共10页
This research talks about the radiator cooling system of the automobile engine,the radiator’ s fluidstructure interaction dynamics based on computational fluid dynamics( CFD) STAR-CCM+ software. The linear regression... This research talks about the radiator cooling system of the automobile engine,the radiator’ s fluidstructure interaction dynamics based on computational fluid dynamics( CFD) STAR-CCM+ software. The linear regression model of coolant determined by MATLAB software was imported into the user-defined field function of the software,using the standard K-Epsilon turbulence model to analyze temperature,pressure and velocity changes of the coolant in the radiator channel. In order to improve the efficiency of the radiator,it is necessary to analyze the structure of two kinds of heat sinks,and get better heat transfer effect. 展开更多
关键词 computational fluid dynamics(CFD) linear regression analysis RADIATOR STAR-CCM+
下载PDF
Image Analysis in Microbiology: A Review 被引量:1
14
作者 Evgeny Puchkov 《Journal of Computer and Communications》 2016年第15期8-32,共26页
This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) object... This review is focused on using computer image analysis as a means of objective and quantitative characterizing optical images of the macroscopic (e.g. microbial colonies) and the microscopic (e.g. single cell) objects in the microbiological research. This is the way of making many visual inspection assays more objective and less time and labor consuming. Also, it can provide new visually inaccessible information on relation between some optical parameters and various biological features of the microbial cul-tures. Of special interest is application of image analysis in fluorescence microscopy as it opens new ways of using fluorescence based methodology for single microbial cell studies. Examples of using image analysis in the studies of both the macroscopic and the microscopic microbiological objects obtained by various imaging techniques are presented and discussed. 展开更多
关键词 Computer Image analysis Microorganisms VIABILITY Yeast Bacteria Fungi Colony Counter Microbial Identification Multispectral Imaging Hyperspectral Imaging Diffraction Pattern Imaging Scatter Pattern Imaging Multifractal analysis Support Vector Machines Principal Component analysis Linear Discriminant Analysi IMAGEJ Matlab Fluorescence Microscopy Microfluorimetry Green Fluorescent Protein (GFP)
下载PDF
Ultimate Strength Analysis of Offshore Jacket Platform
15
作者 Xu Bin Shen Zhonghan Research Associate, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 . Associate Professor, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080 《China Ocean Engineering》 SCIE EI 1995年第3期263-274,共12页
The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspect... The ultimate strength analysis of offshore jacket platforms is a research project which has been developed in recent years. With the rapid development of marine oil industry, the departments of design and IMR (Inspection, Maintenance and Repair) in the offshore engineering have attached great importance to this project. The research procedure applies to both the stress check of new design platforms and the whole safety assessment of existing platforms. In this paper, we combine the pseudo non-linear technique with the linear analysis program and successfully analyze the ultimate strength of the space frame structure subject to the concentrated load and a real jacket platform subject to the dead load and environmental load. 展开更多
关键词 offshore platform ultimate strength linear analysis pseudo non-linear platform collapse
下载PDF
Texture Analysis and Characteristic Identification About Plaque Tissues of IVUS 被引量:1
16
作者 DONG Hai-yan LI Hong 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第2期47-55,共9页
Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the graysc... Intravascular ultrasound can provide clear real-time cross-sectional images,including lumen and plaque.In practice,to identify the plaques tissues in different pathological changes is very important.However,the grayscale differences of them are not so apparent.In this paper a new textural characteristic space vector was formed by the combination of Co-occurrence Matrix and fraction methods.The vector was projected to the new characteristic space after multiplied by a projective matrix which can best classify those plaques according to the Fisher linear discriminant.Then the classification was completed in the new vector space.Experimental results found that the veracity of this classification could reach up to 88%,which would be an accessorial tool for doctors to identify each plaque. 展开更多
关键词 intravascular ultrasound statistical texture fractional texture Fisher linear discriminant analysis
下载PDF
Linear analysis of the dynamic response of a riser subject to internal solitary waves
17
作者 Dalin TAN Xu WANG +1 位作者 Jinlong DUAN Jifu ZHOU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期1023-1034,共12页
The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction betw... The flow field induced by internal solitary waves(ISWs)is peculiar wherein water motion occurs in the whole water depth,and the strong shear near the pycnocline can be generated due to the opposite flow direction between the upper and lower layers,which is a potential threat to marine risers.In this paper,the flow field of ISWs is obtained with the Korteweg-de Vries(Kd V)equation for a two-layer fluid system.Then,a linear analysis is performed for the dynamic response of a riser with its two ends simply supported under the action of ISWs.The explicit expressions of the deflection and the moment of the riser are deduced based on the modal superposition method.The applicable conditions of the theoretical expressions are discussed.Through comparisons with the finite element simulations for nonlinear dynamic responses,it is proved that the theoretical expressions can roughly reveal the nonlinear dynamic response of risers under ISWs when the approximation for the linear analysis is relaxed to some extent. 展开更多
关键词 internal solitary wave(ISW) RISER dynamic response linear analysis
下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
18
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
下载PDF
Statistical Analysis with Dingo Optimizer Enabled Routing for Wireless Sensor Networks
19
作者 Abdulaziz S.Alghamdi Randa Alharbi +1 位作者 Suliman A.Alsuhibany Sayed Abdel-Khalek 《Computers, Materials & Continua》 SCIE EI 2022年第11期2865-2878,共14页
Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy dat... Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique. 展开更多
关键词 Statistical analysis RELIABILITY ROUTING wireless sensor networks linear discriminant analysis dingo optimizer SECURITY
下载PDF
Emotion recognition of Uyghur speech using uncertain linear discriminant analysis
20
作者 Tashpolat Nizamidin Zhao Li +2 位作者 Zhang Mingyang Xu Xinzhou Askar Hamdulla 《Journal of Southeast University(English Edition)》 EI CAS 2017年第4期437-443,共7页
To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conven... To achieve efficient a d compact low-dimensional features for speech emotion recognition,a novel featurereduction method using uncertain linear discriminant analysis is proposed.Using the same principles as for conventional linear discriminant analysis(LDA),uncertainties of the noisy or distorted input data ae employed in order to estimate maximaiy discriminant directions.The effectiveness of the proposed uncertain LDA(ULDA)is demonstrated in the Uyghur speech emotion recognition task.The emotional features of Uyghur speech,especially,the fundamental fequency and formant,a e analyzed in the collected emotional data.Then,ULDA is employed in dimensionality reduction of emotional features and better performance is achieved compared with other dimensionality reduction techniques.The speech emotion recognition of Uyghur is implemented by feeding the low-dimensional data to support vector machine(SVM)based on the proposed ULDA.The experimental results show that when employing a appropriate uncertainty estimation algorithm,uncertain LDA outperforms the conveetional LDA counterpart on Uyghur speech emotion recognition. 展开更多
关键词 Uyghur language speech emotion corpus PITCH FORMANT uncertain linear discriminant analysis (ULDA)
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部