The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for...The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.展开更多
This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix ...This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.展开更多
The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear sy...The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.展开更多
This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to ...This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to be regular and impulse free.By decomposing the systems into slow and fast subsystems,a robust delay-dependent asymptotic stability criteria based on linear matrix inequality is proposed, which is derived by using Lyapunov-Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay-dependent result. The robust delay-dependent stability criterion proposed in this paper is a sufficient condition. Finally, numerical examples and Matlab simulation are provided to illustrate the effectiveness of the proposed method.展开更多
This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict...This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.展开更多
To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally toleran...To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.展开更多
This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transf...This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.展开更多
A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertai...A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.展开更多
A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordin...A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordinates transformation, many uncertain nonlinear systems can be transformed as a linear fractional transformation (LFT) on the generalized plant and the uncertainty. Based on the LFT, a linear robust controller can be obtained by the DK iteration and then a corresponding nonlinear robust control law is constructed. An example was given in the paper.展开更多
This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be sol...This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretiz...This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretized co-positive Lyapunov functions, some stability conditions of switched positive linear systems with all modes unstable are derived in both the continuous-time and the discrete-time cases, respectively. The copositive Lyapunov functions constructed in this paper are timevarying during the dwell time and time-invariant afterwards. In addition, the above approach is extended to the switched interval positive systems. A numerical example is proposed to illustrate our approach.展开更多
In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in ...In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.展开更多
In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws...In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.展开更多
Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is ...Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.展开更多
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design pr...In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.展开更多
The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy r...The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.展开更多
The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs...The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.展开更多
This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative s...This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities (LMI). Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.展开更多
基金supported by Research Foundation of Education Bureau of Shannxi Province, PRC(No.2010JK400)
文摘The robust stability and robust stabilization problems for discrete singular systems with interval time-varying delay and linear fractional uncertainty are discussed. A new delay-dependent criterion is established for the nominal discrete singular delay systems to be regular, causal and stable by employing the linear matrix inequality (LMI) approach. It is shown that the newly proposed criterion can provide less conservative results than some existing ones. Then, with this criterion, the problems of robust stability and robust stabilization for uncertain discrete singular delay systems are solved, and the delay-dependent LMI conditions are obtained. Finally, numerical examples are given to illustrate the effectiveness of the proposed approach.
基金This work was supported in part by the Doctor Subject Foundation of China (No. 20050533015)the National Science Foundation of China(No. 60425310,60574014).
文摘This paper addresses the problems of the robust stability and robust stabilization of a discrete-time system with polytopic uncertainties. A new and simple method is presented to directly decouple the Lyapunov matrix and the system dynamic matrix. Combining this method with the parameter-dependent Lyapunov function approach yields new criteria that include some existing ones as special cases. A numerical example illustrates the improvement over the existing ones.
基金supported by the Doctoral Foundation of Qingdao University of Science and Technology(0022330).
文摘The problem of robustifying linear quadratic regulators (LQRs) for a class of uncertain affine nonlinear systems is considered. First, the exact linearization technique is used to transform an uncertain nonlinear system into a linear one and an optimal LQR is designed for the corresponding nominal system. Then, based on the integral sliding mode, a design approach to robustifying the optimal regulator is studied. As a result, the system exhibits global robustness to uncertainties and the ideal sliding mode dynamics is the same as that of the optimal LQR for the nominal system. A global robust optimal sliding mode control (GROSMC) is realized. Finally, a numerical simulation is demonstrated to show the effectiveness and superiority of the proposed algorithm compared with the conventional optimal LQR.
文摘This paper deals with the problem of robust stability for continuous-time singular systems with state delay and parameter uncertainty. The uncertain singular systems with delay considered in this paper are assumed to be regular and impulse free.By decomposing the systems into slow and fast subsystems,a robust delay-dependent asymptotic stability criteria based on linear matrix inequality is proposed, which is derived by using Lyapunov-Krasovskii functionals, neither model transformation nor bounding for cross terms is required in the derivation of our delay-dependent result. The robust delay-dependent stability criterion proposed in this paper is a sufficient condition. Finally, numerical examples and Matlab simulation are provided to illustrate the effectiveness of the proposed method.
文摘This paper addresses the robust admissibility problem in singular fractional-order continuous time systems. It is based on new admissibility conditions of singular fractional-order systems expressed in a set of strict linear matrix inequalities(LMIs). Then, a static output feedback controller is designed for the uncertain closed-loop system to be admissible. Numerical examples are given to illustrate the proposed methods.
基金supported by the National Natural Science Foundation of China(90816023).
文摘To investigate a class of nonlinear network control system, a robust fault diagnosis method is presented based on the robust state observer. To access the objective that the designed robust filter is maximally tolerant to disturbances and sensitive to fault, the robustness and stability properties of the fault diagnosis scheme are established rigorously. Using the residual vector, a fault tolerant controller is established in order to guarantee the stability of the closed-loop system, and the controller law can be obtained by solving a set of linear matrix inequalities. Then, some relevant sufficient conditions for the existence of a solution are given by applying Lyapunov stability theory. Finally, a simulation example is performed to show the effectiveness of the proposed approach.
基金supported by National Natural Science Foundation of China (No. 60574014, No. 60425310)Doctor Subject Foundation of China (No. 200805330004)+2 种基金Program for New Century Excellent Talents in University (No. NCET-06-0679)Natural Science Foundation of Hunan Province of China (No. 08JJ1010)Science Foundation of Education Department of Hunan Province (No. 08C106)
文摘This paper investigates the robust tracking control problcm for a class of nonlinear networked control systems (NCSs) using the Takagi-Sugeno (T-S) fuzzy model approach. Based on a time-varying delay system transformed from the NCSs, an augmented Lyapunov function containing more useful information is constructed. A less conservative sufficient condition is established such that the closed-loop systems stability and time-domain integral quadratic constraints (IQCs) are satisfied while both time-varying network- induced delays and packet losses are taken into account. The fuzzy tracking controllers design scheme is derived in terms of linear matrix inequalities (LMIs) and parallel distributed compensation (PDC). Furthermore, robust stabilization criterion for nonlinear NCSs is given as an extension of the tracking control result. Finally, numerical simulations are provided to illustrate the effectiveness and merits of the proposed method.
基金the National Natural Science Foundation of China (90716028 and 90405011).
文摘A robust adaptive trajectory linearization control (RATLC) algorithm for a class of nonlinear systems with uncertainty and disturbance based on the T-S fuzzy system is presented. The unknown disturbance and uncertainty are estimated by the T-S fuzzy system, and a robust adaptive control law is designed by the Lyapunov theory. Irrespective of whether the dimensions of the system and the rules of the fuzzy system are large or small, there is only one parameter adjusting on line. Uniformly ultimately boundedness of all signals of the composite closed-loop system are proved by theory analysis. Finally, a numerical example is studied based on the proposed method. The simulation results demonstrate the effectiveness and robustness of the control scheme.
文摘A μ analysis and μ synthesis method for nonlinear robust control systems was presented. The nonlinear robust contrl problem using μ method was described. By means of the nonlinear state feedback and state coordinates transformation, many uncertain nonlinear systems can be transformed as a linear fractional transformation (LFT) on the generalized plant and the uncertainty. Based on the LFT, a linear robust controller can be obtained by the DK iteration and then a corresponding nonlinear robust control law is constructed. An example was given in the paper.
文摘This paper studies the robust stochastic stabilization and robust H∞ control for linear time-delay systems with both Markovian jump parameters and unknown norm-bounded parameter uncertainties. This problem can be solved on the basis of stochastic Lyapunov approach and linear matrix inequality (LMI) technique. Sufficient conditions for the existence of stochastic stabilization and robust H∞ state feedback controller are presented in terms of a set of solutions of coupled LMIs. Finally, a numerical example is included to demonstrate the practicability of the proposed methods.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金supported by National Natural Science Foundation of China (61703288,61603079,61873174)
文摘This paper is concerned with the stability and robust stability of switched positive linear systems(SPLSs) whose subsystems are all unstable. By means of the mode-dependent dwell time approach and a class of discretized co-positive Lyapunov functions, some stability conditions of switched positive linear systems with all modes unstable are derived in both the continuous-time and the discrete-time cases, respectively. The copositive Lyapunov functions constructed in this paper are timevarying during the dwell time and time-invariant afterwards. In addition, the above approach is extended to the switched interval positive systems. A numerical example is proposed to illustrate our approach.
基金This project was supported by the National Natural Science Foundation of China (60274007) NSERC-Canada.
文摘In the area of control theory the time-delay systems have been investigated. It's well known that delays often result in instability, therefore, stability analysis of time-delay systems is an important subject in control theory. As a result, many criteria for testing the stability of linear time-delay systems have been proposed. Significant progress has been made in the theory of impulsive systems and impulsive delay systems in recent years. However, the corresponding theory for uncertain impulsive systems and uncertain impulsive delay systems has not been fully developed. In this paper, robust stability criteria are established for uncertain linear delay impulsive systems by using Lyapunov function, Razumikhin techniques and the results obtained. Some examples are given to illustrate our theory.
基金supported by National Natural Science Foundation of China (No. 60934007, No. 61074060)China Postdoctoral Science Foundation (No. 20090460627)+1 种基金Shanghai Postdoctoral Scientific Program (No. 10R21414600)China Postdoctoral Science Foundation Special Support (No. 201003272)
文摘In this paper, a robust model predictive control approach is proposed for a class of uncertain systems with time-varying, linear fractional transformation perturbations. By adopting a sequence of feedback control laws instead of a single one, the control performance can be improved and the region of attraction can be enlarged compared with the existing model predictive control (MPC) approaches. Moreover, a synthesis approach of MPC is developed to achieve high performance with lower on-line computational burden. The effectiveness of the proposed approach is verified by simulation examples.
基金This work was supported in part by the Chinese Outstanding Youth Science Foundation (No. 69925308)supported by Program for ChangjiangScholars and Innovative Research Team in University
文摘Robust model-reference control for descriptor linear systems with structural parameter uncertainties is investigated. A sufficient condition for existing a model-reference zero-error asymptotic tracking controller is given. It is shown that the robust model reference control problem can be decomposed into two subproblems: a robust state feedback stabilization problem for descriptor systems subject to parameter uncertainties and a robust compensation problem. The latter aims to find three coefficient matrices which satisfy four matrix equations and simultaneously minimize the effect of the uncertainties to the tracking error. Based on a complete parametric solution to a class of generalized Sylvester matrix equations, the robust compensation problem is converted into a minimization problem with quadratic cost and linear constraints. A numerical example shows the effect of the proposed approach.
基金Project (No. 60574081) supported by the National Natural ScienceFoundation of China
文摘In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. First, a reference residual model is introduced to formulate the RFDF design problem as an H∞ model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H∞ optimization control technique, the existence conditions of the RFDF for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.
基金supported by the Program for Natural Science Foundation of Beijing (4062030)Young Teacher Research Foundation of North China Electric Power University
文摘The problem of fuzzy modeling for state and input time-delays systems with a class of nonlinear uncertainties by fuzzy T-S model is addressed.By using the linear matrix inequality(LMI) method, the problem of fuzzy robust H ∞ controller design for the system is studied.Assuming that the nonlinear uncertain functions in the model considered are gain-bounded, a sufficient condition for the robustly asymptotic stability of the closed-loop system is obtained via Lyapunov stability theory.By solving the LMI, a feedback control law which guarantees the robustly asymptotic stability of the closed-loop system is constructed and the effect of the disturbance input on the controlled output is ruduced to a prescribed level.
基金the National Natural Science Foundation of China (No.60421002)the National High Technology Research and Development Program of China under grant 863 Program (2006AA04 Z182).
文摘The problem of robust stabilization for a class of uncertain networked control systems (NCSs) with nonlinearities satisfying a given sector condition is investigated in this paper. By introducing a new model of NCSs with parameter uncertainty, network-induced delay, nonlinearity and data packet dropout in the transmission, a strict linear matrix inequality (LMI) criterion is proposed for robust stabilization of the uncertain nonlinear NCSs based on the Lyapunov stability theory. The maximum allowable transfer interval (MATI) can be derived by solving the feasibility problem of the corresponding LMI. Some numerical examples are provided to demonstrate the applicability of the proposed algorithm.
基金This work was supported by the National Natural Science Foundation of China(No.10571036).
文摘This note deals with the problem of stabilization/stability for neutral systems with nonlinear perturbations. A new stabilization/stability scheme is presented. Using improved Lyapunov functionals, less conservative stabilization/stability conditions are derived for such systems based on linear matrix inequalities (LMI). Numerical examples are provided to show that the proposed results significantly improve the allowed upper bounds of the delay size over some existing ones in the literature.