Fifty-one tree leaves were sampled in the industrial area,residential area,and Fenhe River ecological zone,for the purpose of a magnetic study on atmospheric pollution in Linfen City,Shanxi Province,China.Measurements...Fifty-one tree leaves were sampled in the industrial area,residential area,and Fenhe River ecological zone,for the purpose of a magnetic study on atmospheric pollution in Linfen City,Shanxi Province,China.Measurements of mass-specific magnetic susceptibility(χ) show a significant variation range(from 11.6 × 10-8 m3/kg to 129.7 × 10-8 m3/kg).Overall values of magnetic susceptibility decline in the following sequence:industrial area > residential area > Fenhe River ecological zone.The relatively elevated concentration-related magnetic parameters(saturation isothermal remanent magnetization,anhysteretic remanent magnetization and magnetic susceptibility) appear in the industrial area,with their highest values in the vicinity of Linfen Steel Mill.Magnetic particles are dominated by multidomain,magnetite-like minerals.Magnetic particle concentration and grain size both decrease with the increasing distance from industrial area,indicating the industrial area,especially Linfen Steel Mill,is the main source of atmospheric particle pollution.Residential area and Fenhe River ecological zone are also affected by industrial emission to a certain extent.The results of this study indicate that magnetic measurements of tree leaves are practicable for monitoring and determination of atmospheric pollution in Linfen City.展开更多
In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation fiel...In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.展开更多
The Linfen rift is a Cenozoic extensional rift with significant seismicity and seismic hazards.Studies of this rift shed light on deep dynamic processes and seismogenic mechanisms relevant to crustal structure and sei...The Linfen rift is a Cenozoic extensional rift with significant seismicity and seismic hazards.Studies of this rift shed light on deep dynamic processes and seismogenic mechanisms relevant to crustal structure and seismic activity.We first conducted a joint inversion of receiver functions and surface wave dispersion on waveform data collected from 27 broadband seismic stations to image the crustal S-wave velocity in the Linfen rift and its surroundings.We then relocated the source parameters for 10 earthquake events with depths>20 km and studied the relationship between crustal S-wave velocity and seismicity.The results show that low-velocity zones of different scales exist in the middle-lower crust,and that the depth of the seismogenic layer gradually increases from^25 km in the south to^34 km in the north,roughly corresponding to the bottom of the low-velocity zone.We found that most of the relocated earthquakes occurred in the low-velocity zone at depths of 18 km to 34 km,with the deepest at 32 km.Two of the greatest historic earthquakes,Linfen(Ms 7.75)in 1695 and Hongtong(Ms 8.0)in 1303,occurred at the bottom of the high-velocity zone at depths of 12 km to 18 km.Our results,combined with previous studies,suggest that the upwelling mantle material below the rift did not remarkably affect the velocity structure from the bottom of the seismogenic layer down to the uppermost mantle nor heat the crust.It is likely that neither crustal-scale faults nor mantle earthquakes exist in the Linfen rift.展开更多
基金Under the auspices of National Natural Science Foundation of China (No. 40972216)Deutsche Forschungsgemein-schaft (DFG) Project (NO. AP 34/21)
文摘Fifty-one tree leaves were sampled in the industrial area,residential area,and Fenhe River ecological zone,for the purpose of a magnetic study on atmospheric pollution in Linfen City,Shanxi Province,China.Measurements of mass-specific magnetic susceptibility(χ) show a significant variation range(from 11.6 × 10-8 m3/kg to 129.7 × 10-8 m3/kg).Overall values of magnetic susceptibility decline in the following sequence:industrial area > residential area > Fenhe River ecological zone.The relatively elevated concentration-related magnetic parameters(saturation isothermal remanent magnetization,anhysteretic remanent magnetization and magnetic susceptibility) appear in the industrial area,with their highest values in the vicinity of Linfen Steel Mill.Magnetic particles are dominated by multidomain,magnetite-like minerals.Magnetic particle concentration and grain size both decrease with the increasing distance from industrial area,indicating the industrial area,especially Linfen Steel Mill,is the main source of atmospheric particle pollution.Residential area and Fenhe River ecological zone are also affected by industrial emission to a certain extent.The results of this study indicate that magnetic measurements of tree leaves are practicable for monitoring and determination of atmospheric pollution in Linfen City.
基金supported by the Science and Technology Project of Shanxi Province(20140313023-1)the special earthquake research project of China Earthquake Administration(201208009)+1 种基金Natural Science Foundation of ShanxiChina(2011021024-1)
文摘In this study,under the assumption that the two huge leveling deformation anomalies at Linfen seismic station were caused by the Luoyunshan fault( Tumen-Yuli section)movement, we computed the vertical deformation field distribution based on the rectangular fault dislocation model and measured the ground deformation field of the study area using D-InS AR technology. The results are as follows:( 1) Theoretically,the ground vertical deformation field caused by fault movement could be within the elliptical deformation area with the long axis parallel to the fault strike. The largest deformation region is located in the center of the area in the hanging wall of the fault,and the deformation gradually decreases to zero toward the periphery; the impact range induced by the two deformations is respectively as follows: The long axes are about 18 km and26km,the short axes are about 12 km and 17 km and the obvious deformation amplitude is about 1- 3mm and 4- 14 mm.( 2) The measured deformation field by D-InS AR shows that there is no continuous deformation area consistent with the fault strike,and only the presence of land subsidence possibly caused by groundwater excessive exploitation,with the deformation amplitude about 10- 12 mm and 1- 5mm.( 3) The measured deformation field is not consistent with the theoretical result on deformation area and amplitude,which indicates that the fault movement is not the main cause of Linfen huge leveling deformation,but may rather be because of local deformation of the soil layers in the hanging wall of the fault.( 4) By combining the fault dislocation model simulation with the D-InS AR technology measurement,we can determine effectively the nature of the anomalyof the huge cross-fault leveling deformation,thus provide scientific basis for verification of significant leveling anomalies.
基金We also thank editors and two anonymous reviewers for their constructive reviews.This work is supported by the DREAM Project of the National Key R&D Program of China(No.2016YFC0600402)the National Natural Science Foundation of China(Grant No.41604056).
文摘The Linfen rift is a Cenozoic extensional rift with significant seismicity and seismic hazards.Studies of this rift shed light on deep dynamic processes and seismogenic mechanisms relevant to crustal structure and seismic activity.We first conducted a joint inversion of receiver functions and surface wave dispersion on waveform data collected from 27 broadband seismic stations to image the crustal S-wave velocity in the Linfen rift and its surroundings.We then relocated the source parameters for 10 earthquake events with depths>20 km and studied the relationship between crustal S-wave velocity and seismicity.The results show that low-velocity zones of different scales exist in the middle-lower crust,and that the depth of the seismogenic layer gradually increases from^25 km in the south to^34 km in the north,roughly corresponding to the bottom of the low-velocity zone.We found that most of the relocated earthquakes occurred in the low-velocity zone at depths of 18 km to 34 km,with the deepest at 32 km.Two of the greatest historic earthquakes,Linfen(Ms 7.75)in 1695 and Hongtong(Ms 8.0)in 1303,occurred at the bottom of the high-velocity zone at depths of 12 km to 18 km.Our results,combined with previous studies,suggest that the upwelling mantle material below the rift did not remarkably affect the velocity structure from the bottom of the seismogenic layer down to the uppermost mantle nor heat the crust.It is likely that neither crustal-scale faults nor mantle earthquakes exist in the Linfen rift.