The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
AIM: To compare three kinds of fluorescent probes for in vitro labeling and in vivo tracking of endothelial progenitor cells(EPCs) in a mouse model of laser-induced retinal injury.METHODS: EPCs were isolated from ...AIM: To compare three kinds of fluorescent probes for in vitro labeling and in vivo tracking of endothelial progenitor cells(EPCs) in a mouse model of laser-induced retinal injury.METHODS: EPCs were isolated from human umbilical cord blood mononuclear cells and labeled with three different fluorescent probes: 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester(CFSE), 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate linked acetylated low-density lipoprotein(Di I-Ac LDL), and green fluorescent protein(GFP). The fluorescent intensity of EPCs was examined by confocal microscopy. Survival rate of labeled EPCs was calculated with trypan blue staining, and their adhesive capability was assessed. A mouse model of retinal injury was induced by laser, and EPCs were injected into the vitreous cavity. Frozen section and fluorescein angiography on flat-mounted retinal samples was employed to track the labeled EPCs in vivo.RESULTS: EPCs labeled with CFSE and Di I-Ac LDL exhibited an intense green and red fluorescence at the beginning; the fluorescence intensity decreased gradually to 20.23% and 49.99% respectively, after 28 d. On the contrary, the florescent intensity of GFP-labeled EPCs increased in a time-dependent manner. All labeled EPCs showed normal morphology and no significant change in survival and adhesive capability. In the mouse model, transplantation of EPCs showed a protective effect against retinal injury. EPCs labeled with CFSE and Di I-Ac LDL were successfully tracked in mice during the development of retinal injury and repair; however, GFP-labeled EPCs were not detected in the laser-injured mouse retina.CONCLUSION: The three fluorescent markers used in this study have their own set of advantages and disadvantages. CFSE and Di I-Ac LDL are suitable for short-term EPClabeling, while GFP should be used for long-term labeling. The choice of fluorescent markers should be guided by the purpose of the study.展开更多
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金Supported by the National Natural Science Foundation of China(No.81400403)the International Science and Technology Cooperation Program of Jilin Province(No.20110733)the Technology Program of Soochow City(No.SYS201375)
文摘AIM: To compare three kinds of fluorescent probes for in vitro labeling and in vivo tracking of endothelial progenitor cells(EPCs) in a mouse model of laser-induced retinal injury.METHODS: EPCs were isolated from human umbilical cord blood mononuclear cells and labeled with three different fluorescent probes: 5-(and-6)-carboxyfluorescein diacetate succinimidyl ester(CFSE), 1,1′-dilinoleyl-3,3,3′,3′-tetramethylindo-carbocyanine perchlorate linked acetylated low-density lipoprotein(Di I-Ac LDL), and green fluorescent protein(GFP). The fluorescent intensity of EPCs was examined by confocal microscopy. Survival rate of labeled EPCs was calculated with trypan blue staining, and their adhesive capability was assessed. A mouse model of retinal injury was induced by laser, and EPCs were injected into the vitreous cavity. Frozen section and fluorescein angiography on flat-mounted retinal samples was employed to track the labeled EPCs in vivo.RESULTS: EPCs labeled with CFSE and Di I-Ac LDL exhibited an intense green and red fluorescence at the beginning; the fluorescence intensity decreased gradually to 20.23% and 49.99% respectively, after 28 d. On the contrary, the florescent intensity of GFP-labeled EPCs increased in a time-dependent manner. All labeled EPCs showed normal morphology and no significant change in survival and adhesive capability. In the mouse model, transplantation of EPCs showed a protective effect against retinal injury. EPCs labeled with CFSE and Di I-Ac LDL were successfully tracked in mice during the development of retinal injury and repair; however, GFP-labeled EPCs were not detected in the laser-injured mouse retina.CONCLUSION: The three fluorescent markers used in this study have their own set of advantages and disadvantages. CFSE and Di I-Ac LDL are suitable for short-term EPClabeling, while GFP should be used for long-term labeling. The choice of fluorescent markers should be guided by the purpose of the study.