In abandoned mine sites, i.e., mine sites where mining operations have ended, wide spread contaminations are often evident, but the potential sources and pathways of contamination especially through the subsurface, ar...In abandoned mine sites, i.e., mine sites where mining operations have ended, wide spread contaminations are often evident, but the potential sources and pathways of contamination especially through the subsurface, are difficult to identify due to inadequate and sparse geochemical measurements available. Therefore, it is essential to design and implement a planned monitoring net-work to obtain essential information required for establishing the potential contamination source locations, i.e., waste dumps, tailing dams, pits and possible pathways through the subsurface, and to design a remediation strategy for rehabilitation. This study presents an illustrative application of modeling the flow and transport processes and monitoring network design in a study area hydrogeologically resembling an abandoned mine site in Queensland, Australia. In this preliminary study, the contaminant transport process modeled does not incorporate the reactive geochemistry of the contaminants. The transport process is modeled considering a generic conservative contaminant for the illustrative purpose of showing the potential application of an optimal monitoring design methodology. This study aims to design optimal monitoring network to: 1) minimize the contaminant solute mass estimation error;2) locate the plume boundary;3) select the monitoring locations with (potentially) high concentrations. A linked simulation optimization based methodology is utilized for optimal monitoring network design. The methodology is applied utilizing a recently developed software package CARE-GWMND, developed at James Cook University for optimal monitoring network design. Given the complexity of the groundwater systems and the sparsity of pollutant concentration observation data from the field, this software is capable of simulating the groundwater flow and solute transport with spatial interpolation of data from a sparse set of available data, and it utilizes the optimization algorithm to determine optimum locations for implementing monitoring wells.展开更多
In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to t...In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.展开更多
Two kinds of space applications of THz band are proposed. A novel method for the THz band signal propagation in the satellite-earth link is studied in order to overcome the huge loss in the atmosphere. The THz signal ...Two kinds of space applications of THz band are proposed. A novel method for the THz band signal propagation in the satellite-earth link is studied in order to overcome the huge loss in the atmosphere. The THz signal should be transformed to Ka band by data processor on satellite, and then be transmitted to the earth station in order to avoid the THz loss in the atmosphere. The design can realize at least 10 Gbps space communication or data relay. Furthermore, three aspects of challenges in THz band are analyzed.展开更多
The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of ...The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.展开更多
The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using ...The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using conventional methods.In this paper,a new multilevel design method oriented network environment is proposed,which maps the design problem of large-scale machine system into a hypergraph with degree of linking strength (DLS) between vertices.By decomposition of hypergraph,this method can divide the complex design problem into some small and simple subproblems that can be solved concurrently in a network.展开更多
文摘In abandoned mine sites, i.e., mine sites where mining operations have ended, wide spread contaminations are often evident, but the potential sources and pathways of contamination especially through the subsurface, are difficult to identify due to inadequate and sparse geochemical measurements available. Therefore, it is essential to design and implement a planned monitoring net-work to obtain essential information required for establishing the potential contamination source locations, i.e., waste dumps, tailing dams, pits and possible pathways through the subsurface, and to design a remediation strategy for rehabilitation. This study presents an illustrative application of modeling the flow and transport processes and monitoring network design in a study area hydrogeologically resembling an abandoned mine site in Queensland, Australia. In this preliminary study, the contaminant transport process modeled does not incorporate the reactive geochemistry of the contaminants. The transport process is modeled considering a generic conservative contaminant for the illustrative purpose of showing the potential application of an optimal monitoring design methodology. This study aims to design optimal monitoring network to: 1) minimize the contaminant solute mass estimation error;2) locate the plume boundary;3) select the monitoring locations with (potentially) high concentrations. A linked simulation optimization based methodology is utilized for optimal monitoring network design. The methodology is applied utilizing a recently developed software package CARE-GWMND, developed at James Cook University for optimal monitoring network design. Given the complexity of the groundwater systems and the sparsity of pollutant concentration observation data from the field, this software is capable of simulating the groundwater flow and solute transport with spatial interpolation of data from a sparse set of available data, and it utilizes the optimization algorithm to determine optimum locations for implementing monitoring wells.
基金Supported by the National High Technology Research and Development Program of China(2013AA1548)
文摘In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.
文摘Two kinds of space applications of THz band are proposed. A novel method for the THz band signal propagation in the satellite-earth link is studied in order to overcome the huge loss in the atmosphere. The THz signal should be transformed to Ka band by data processor on satellite, and then be transmitted to the earth station in order to avoid the THz loss in the atmosphere. The design can realize at least 10 Gbps space communication or data relay. Furthermore, three aspects of challenges in THz band are analyzed.
基金Supported by State Key Program of National Natural Science Foundation of China(Grant No.51535009)111 Project of China(Grant No.B13044).
文摘The design synthesis is the key issue in the mechanical conceptual design to generate the design candidates that meet the design requirements.This paper devotes to propose a novel and computable synthesis approach of mechanisms based on graph theory and polynomial operation.The graph framework of the synthesis approach is built firstly,and it involves:(1)the kinematic function units extracted from mechanisms;(2)the kinematic link graph that transforms the synthesis problem from mechanical domain into graph domain;(3)two graph representations,i.e.,walk representation and path representation,of design candidates;(4)a weighted matrix theorem that transforms the synthesis process into polynomial operation.Then,the formulas and algorithm to the polynomial operation are presented.Based on them,the computational flowchart to the synthesis approach is summarized.A design example is used to validate and illustrate the synthesis approach in detail.The proposed synthesis approach is not only supportive to enumerate the design candidates to the conceptual design of a mechanical system exhaustively and automatically,but also helpful to make that enumeration process computable.
文摘The design of large-scale machine system is a very complex problem.These design problems usually have a lot of design variables and constraints so that they are difficult to be solved rapidly and efficiently by using conventional methods.In this paper,a new multilevel design method oriented network environment is proposed,which maps the design problem of large-scale machine system into a hypergraph with degree of linking strength (DLS) between vertices.By decomposition of hypergraph,this method can divide the complex design problem into some small and simple subproblems that can be solved concurrently in a network.