With the rapid evolution of WSNs technology, it is very important to evaluate link quality quickly and accurately, so that the routing protocols can take relevant strategies in time to keep the entire network working ...With the rapid evolution of WSNs technology, it is very important to evaluate link quality quickly and accurately, so that the routing protocols can take relevant strategies in time to keep the entire network working steadily and efficiently. However, the issue of layer is still open to research. To tackle this issue, a improving link quality assessment methods on physical novel link quality assessment metric called S3LQA is proposed, which estimates the link quality of wireless sensor networks by CC2420 wireless radio frequency transceiver principles and free space propagation theory. The metric adopts both complete and incomplete packages to improve the evaluation performance effectively based on IEEE802. 15.4 frame format and DSSS-O- QPSK mechanism. The experimental results show that the proposed method can improve energy cost and achieves hatter real-timin nerformance than traditional counting-based (PRR) link aualitv assessment metric.展开更多
This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,a...This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,an analytical model for DFE burst error length distribution is proposed and simulated based on a NRZ electrical link in which a 5-tap DFE combined with a multiple-tap feed forward equalizer( FFE) is included. Then,a detailed derivation for BER considering DFE error propagation is given based on the distribution of burst error run length and the BER performance with and without forward error correction( FEC) is simulated too. After that,this paper investigates several MUX-based FEC interleaving methods including their complexity and latency in order to improve BER further. At last,three FEC interleaving schemes are compared not only in interleaving gain,but also in hardware complexities and latencies. Simulation results show that pre-interleave bit muxing can obtain good tradeoff between BER and complexity for 400 Gb E electrical link.展开更多
针对气象变化对自由空间光(Free Space Optical,FSO)通信链路和毫米波射频(Radio Frequency,RF)通信链路可用率的影响问题,采用马尔科夫建模与稳态概率求解计算方法,分析不同天气条件下FSO/RF混合链路的双接收站分集与中断概率性能.基于...针对气象变化对自由空间光(Free Space Optical,FSO)通信链路和毫米波射频(Radio Frequency,RF)通信链路可用率的影响问题,采用马尔科夫建模与稳态概率求解计算方法,分析不同天气条件下FSO/RF混合链路的双接收站分集与中断概率性能.基于FSO链路和RF链路的信道模型,采用有限状态马尔科夫链(Finite State Markov Chain,FSMC)分别对单双站FSO/RF混合链路的切换选择进行建模,推导得出不同参数和天气情况下系统稳态的中断概率表达式.数值计算结果表明,当中断概率达到10^(-6),雨雾天气链路距离为1~7 km时,双站FSO/RF混合链路相比单站可获得4~25 dB的增益.展开更多
Affected by common target selection,target motion estimation and time alignment,the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function...Affected by common target selection,target motion estimation and time alignment,the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function of a data link network,a collaborative algorithm is proposed,which makes use of a virtual coordinates constructed by airplane to get high precision measurement source and realize effective estimation of the system error. This algorithm is based on Kalman filter and does not require high capacities in memory and calculation. Simulated results show that the algorithm has better convergence performance and estimation precision,no constrain on sampling period and accords with transfer characteristic of data link and tactical internet perfectly.展开更多
The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by it...The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals.展开更多
UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make f...UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant No.61262020)Aeronautical Science Foundation of China(Grant No.2010ZC56008 and 2012ZC56006)Key Technology R&D Program of Jiangxi Province(Grant No.2009BGA01000 and 20111BBE50030)
文摘With the rapid evolution of WSNs technology, it is very important to evaluate link quality quickly and accurately, so that the routing protocols can take relevant strategies in time to keep the entire network working steadily and efficiently. However, the issue of layer is still open to research. To tackle this issue, a improving link quality assessment methods on physical novel link quality assessment metric called S3LQA is proposed, which estimates the link quality of wireless sensor networks by CC2420 wireless radio frequency transceiver principles and free space propagation theory. The metric adopts both complete and incomplete packages to improve the evaluation performance effectively based on IEEE802. 15.4 frame format and DSSS-O- QPSK mechanism. The experimental results show that the proposed method can improve energy cost and achieves hatter real-timin nerformance than traditional counting-based (PRR) link aualitv assessment metric.
基金Supported by the National Natural Science Foundation of China(No.61471119)
文摘This paper evaluates the effect of decision feedback equalizer( DFE) error propagation for400 Gb/s Ethernet( 400 GbE) electrical link in order to propose some effective methods to improve bit error rate( BER). First,an analytical model for DFE burst error length distribution is proposed and simulated based on a NRZ electrical link in which a 5-tap DFE combined with a multiple-tap feed forward equalizer( FFE) is included. Then,a detailed derivation for BER considering DFE error propagation is given based on the distribution of burst error run length and the BER performance with and without forward error correction( FEC) is simulated too. After that,this paper investigates several MUX-based FEC interleaving methods including their complexity and latency in order to improve BER further. At last,three FEC interleaving schemes are compared not only in interleaving gain,but also in hardware complexities and latencies. Simulation results show that pre-interleave bit muxing can obtain good tradeoff between BER and complexity for 400 Gb E electrical link.
文摘针对气象变化对自由空间光(Free Space Optical,FSO)通信链路和毫米波射频(Radio Frequency,RF)通信链路可用率的影响问题,采用马尔科夫建模与稳态概率求解计算方法,分析不同天气条件下FSO/RF混合链路的双接收站分集与中断概率性能.基于FSO链路和RF链路的信道模型,采用有限状态马尔科夫链(Finite State Markov Chain,FSMC)分别对单双站FSO/RF混合链路的切换选择进行建模,推导得出不同参数和天气情况下系统稳态的中断概率表达式.数值计算结果表明,当中断概率达到10^(-6),雨雾天气链路距离为1~7 km时,双站FSO/RF混合链路相比单站可获得4~25 dB的增益.
基金Sponsored by the National Natural Science Foundation of China (60672080)National 863 High Technology Project (2008AA01Z216)
文摘Affected by common target selection,target motion estimation and time alignment,the radar system error registration algorithm is greatly limited in application. By using communication and time synchronization function of a data link network,a collaborative algorithm is proposed,which makes use of a virtual coordinates constructed by airplane to get high precision measurement source and realize effective estimation of the system error. This algorithm is based on Kalman filter and does not require high capacities in memory and calculation. Simulated results show that the algorithm has better convergence performance and estimation precision,no constrain on sampling period and accords with transfer characteristic of data link and tactical internet perfectly.
基金Natural Science Foundation of Shanxi Province(No.2009011023)
文摘The method based on particle swarm optimization(PSO)integrated with functional link articial neural network(FLANN)for correcting dynamic characteristics of sensor is used to reduce sensor’s dynamic error caused by its system limitations.Combining the advantages of PSO and FLANN,with this method a dynamic compensator can be realized without knowing the dynamic model of the sensor.According to the input and output of the sensor and the reference model,the weights of the network trained were used to initialize one particle station of the whole particle swarm when the training of the FLANN had been finished.Then PSO algorithm was applied,and the global best particle station of the particle swarm was the parameters of the compensator.The feasibility of dynamic compensation method is tested.Simulation results from simulator of sensor show that the results after being compensated have given a good description to input signals.
文摘UAV data link has been considered as an important part of UAV communication system, through which the UAV could communicate with warships. However, constant coding and modulation scheme that UAV adopts does not make full use of the channel capacity when UAV communicates with warships in a good channel environment. In order to improve channel capacity and spectral efficiency, adaptive coded modulation technology is studied. Based on maritime channel model, SNR estimation technology and adaptive threshold determination technology, the simulation of UAV data link communication is carried out in this paper. Theoretic analysis and simulation results show that according to changes in maritime channel state, UAV can dynamically adjust the adaptive coded modulation scheme on the condition of meeting target Bit-Error-Rate (BER), the maximum amount of data transfer is non-adaptive systems three times.