The conventional linkage mechanisms with compliant joint have been widely studied and implemented for increasing the adaptability of the mechanism to external contacts. However, the analysis of how compliant joints in...The conventional linkage mechanisms with compliant joint have been widely studied and implemented for increasing the adaptability of the mechanism to external contacts. However, the analysis of how compliant joints in linkage mechanism can reduce the energy consumption isn't still studied deeply. In a mobile service robot head, the actions of blinking the eyes and moving the eyeballs are realized by the planar linkage mechanism respectively. Therefore, minimizing the driving torques through motion trajectories for the linkage mechanism, which will be beneficial to extend the working time for mobile service robots. The dynamic modeling of the linkage mechanism with springs-loaded compliant joint is established. An optimization procedure for obtaining the optimal parameters of springs is proposed for minimizing the max value of driving torques within a range of desired operating conditions. The Simulations prove that the linkage mechanism with compliant joints can effectively reduce the driving torques, and reduce the energy consumption consequently. The framework can also be applied in other similar applications to reduce the driving torque and save energy. Compared with previous efforts, this is the first attempt that the linkage mechanism with complaint joint is applied in the robot head for reducing the driving torque.展开更多
The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the rela...The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.展开更多
The dynamic analysis of a one-DOF RSRRR spatial linkage mechanism, including four rotational joints R and one spherical joint S, is presented in the paper. It is assumed that friction occurs in the rotational joints, ...The dynamic analysis of a one-DOF RSRRR spatial linkage mechanism, including four rotational joints R and one spherical joint S, is presented in the paper. It is assumed that friction occurs in the rotational joints, whereas a spherical joint can be treated as an ideal one. The mechanism in the form of a closed-loop kinematic chain was divided by cut joint technique into two open-loop kinematic chains in place of the spherical joint. Joint coordinates and homogeneous transformation matrices were used to describe the geometry of the system. Equations of the chains' motion were derived using formalism of Lagrange equations. Cut joint constraints and reaction forces, acting in the cutting place---i.e, in the spherical joint, have been introduced to complete the equations of motion. As a consequence, a set of differential-algebraic equations has been obtained. In order to solve these equations, a procedure based on differentiation twice of the formulated constraint equations with respect to time has been applied. In order to determine values of friction torques in the rotational joints in each integrating step of the equations of motion, joint forces and torques were calculated using the recursive Newton-Euler algorithm taken from robotics. For the requirements of the method, a model of a rotational joint has been developed. Some examples of results of the numerical calculations made have been presented in the conclusions of the paper.展开更多
<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""> </span><span style="font-family:Verdana;">To </sp...<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""> </span><span style="font-family:Verdana;">To </span><span style="font-family:""><span style="font-family:Verdana;">put forward suggestions to improve the linkage mechanism between China’s essential medicine list and healthcare insurance medicine list. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Comparative study of the organization setting, selection criteria, adjustment procedures, and reimbursement of essential medicine list and healthcare insurance medicine list, containing</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">both the foreign experience and China’s status quo. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">When two lists exist at the same time, they are often managed separately abroad, setting more selection criteria for the essential medicine, and giving the essential medicine </span></span><span style="font-family:Verdana;">a </span><span style="font-family:""><span style="font-family:Verdana;">higher payment ratio. The two lists in China are managed and adjusted separately, but lack of con</span><span style="font-family:Verdana;">nection</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> As a result,</span><span style="font-family:""> </span><span style="font-family:Verdana;">some essential medicines cannot be reimbursed</span><span style="font-family:""><span style="font-family:Verdana;">. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The two lists’ linkage mechanism needs to be improved. It is recommended to </span></span><span style="font-family:Verdana;">make it </span><span style="font-family:Verdana;">clear that essential medicines should be selected from the healthcare insurance medicine list, and enhance the consistency of medicine evaluation through mutually scientific evidence.展开更多
This paper proposes a novel underactuated finger mechanism based on a motion coupling and shape-adaptive linkage design that combines anthropomorphic free motion and adaptive grasping. The proposed three-joint finger ...This paper proposes a novel underactuated finger mechanism based on a motion coupling and shape-adaptive linkage design that combines anthropomorphic free motion and adaptive grasping. The proposed three-joint finger mechanism with one active Degree of Freedom (DOF) consists of a five-linkage meehanism in the proximal phalanx and a mechanism comprising two parallel planar four-bar linkages in the middle phalanx. The respective mechanism allows the simultaneously rotation of their corresponding pha- langes in the plane before making contact with an object, and can fully envelop an object, even if certain phalanges are blocked. The duel parallel four-bar linkage mechanism is adopted to improve the grasping capacity of the distal phalanx. An optimal design of the finger is presented according to anthropomorphic phalanx trajectories and maximized grasping forces obtained with consideration for the angular velocity relationships of the three phalanges and their force transmission performances. The functionality of the proposed finger mechanism is verified through multiple simulations and grasping experiments using a prototype finger.展开更多
Gaseous therapy based on nitric oxide(NO),as a potential anti-tumor treatment strategy,has attracted great attention,but the targeted and controlled gas release in the tumor site still remains a challenge.In addressin...Gaseous therapy based on nitric oxide(NO),as a potential anti-tumor treatment strategy,has attracted great attention,but the targeted and controlled gas release in the tumor site still remains a challenge.In addressing these difficulties,a near-infrared(NIR)light-triggered NO release nanogenerator with a“linkage mechanism”was designed on the basis of sodium nitroprussidedoped mesoporous Prussian blue nanoparticles,in which the outer structure was modified with p H-sensitive gatekeeper chitosan and tumor-targeting agent folic acid.The“linkage mechanism”can achieve precise release of NO under the control of photothermal effect at tumor site,which can couple photothermal therapy and gas therapy to address the premature release of gas during transportation.Meanwhile,the amount of released gas can be controlled by adjusting the irradiation time and laser intensity.Furthermore,as-fabricated nanocomposites hold high photothermal conversion efficiency under NIR laser irradiation,resulting in the on-demand release of NO and chemotherapy drugs.The released NO can inhibit the expression of hypoxiainducible factorα(HIF-1α)and alleviate the hypoxic tumor microenvironment,thereby enhancing the efficacy of chemotherapy.Moreover,in vitro and in vivo experiments exhibited remarkable antitumor efficiency,and the synergistic gas/chemo/photothermal therapy of deep tumors was achieved.These findings indicate an effective strategy to stimulate further the development of deep tumor therapy,which may provide new insights into other NO-related medical applications.展开更多
The introduction of the concept of new quality productivity has attracted a great deal of attention in the educational community.However,there is an urgent need to align it with policy orientation and advancements in ...The introduction of the concept of new quality productivity has attracted a great deal of attention in the educational community.However,there is an urgent need to align it with policy orientation and advancements in science and technology moving forward.Colleges and universities themselves should be the leaders of advanced thinking and scientific and technological development,and play their due roles in line with the development of the times to provide quality and urgent talents and intellectual support.For this reason,this paper proposes that universities should consciously establish a set of regular operation mechanisms,namely,the linkage mechanism between“social demand”and“connotation construction,”and operate regularly under the guarantee of the system.This enables universities to lead or grasp the pulse of scientific and technological development,constantly improve the level of connotation construction,promote high-quality employment,and provide high-quality services for modernization and the great rejuvenation of the Chinese nation.展开更多
Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can sig...Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.展开更多
In order to further analyze the influence of clearance on the kinematic performance of spatial linkage weft insertion mechanism,it is necessary to study the dynamic characteristics of contact impact force model with t...In order to further analyze the influence of clearance on the kinematic performance of spatial linkage weft insertion mechanism,it is necessary to study the dynamic characteristics of contact impact force model with the variable stiffness and damping coefficient.Firstly,the parameters in the output process of the system are solved by describing of the flexible joint clearance.Then,based on Lankarani-Nikravesh contact force model,the contact impact stiffness and damping coefficient is modified from fixed values to time-varying coefficients.The dynamic model of spatial linkage weft insertion mechanism with modified clearance is established by Lagrange method,and the dynamic characteristics of the system are calculated.The results show that the joint clearance can directly affect the output performance of the mechanism.With the increase of the clearance value,the curve fluctuations of acceleration,driving torque and collision force are obvious,and it will be further intensified with the increase of spindle speed,which greatly affects the stability of mechanism and fabric quality.Finally,the virtual prototype is established by the SolidWorks software and simulated by the ADAMS software.The simulation results are compared with the numerical results,which verifies the accuracy of the modeling method in this paper.展开更多
Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in c...Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in cold regions.In this study,the triaxial compression test are performed on mudstone in the weakly cemented soft rock strata in the mining area of western China,and the mechanical characteristics and failure mechanism of weakly cemented mudstone are systematically investigated under the combined action of freezing and loading.Furthermore,the quantitative relationship between the microstructural parameters and the macroscopic strength and deformation parameters is established based on fractal theory.Thus,the failure mechanism of frozen weakly cemented mudstone is revealed on both micro- and macro-scales.The results show that temperature and confining pressure significantly affects the elastic modulus and peak strength of weakly cemented mudstone.With decreasing temperature,the compressive strength increases,while the corresponding peak strain decreases gradually.On the deformation curve,the plastic deformation stage is shortened,and the brittle fracture feature at the post-peak stage is more prominent,and the elastic modulus correspondingly increases with decreasing temperature.Under low-temperature conditions,most of the weakly cemented mudstone undergoes microscopic shear failure along the main fracture surface.The micro-fracture morphology characteristics of weakly cemented mudstone under different temperatures are quantified via the fractal dimension,and an approximately exponential relationship can be obtained among the fractal dimension and the temperature,compressive strength and elastic modulus.展开更多
Clearance at turning pair has a strong impact on the kinetic accuracy of linkage, but there is short of a generic model to analyze it so far. Clearance error, input error, and manufacturing tolerance of links are take...Clearance at turning pair has a strong impact on the kinetic accuracy of linkage, but there is short of a generic model to analyze it so far. Clearance error, input error, and manufacturing tolerance of links are taken into consideration as the random variables synthetically. The kinematics and dynamics accuracy analysis models for planar linkages with multiple clearances at joints are built up as well. At last a typical planar linkage is selected for nurnerical illustration. These models stated in matrix resolve the relativity of output parameter errors of mechanism and therefore are of vital significance for the reliability analysis and synthesis of mechanism with clearances.展开更多
This paper presents an investigation on the active vibration control of flexible linkage mechanisms featuring piezoceramic actuators and strain gauge sensors. The dynamic equation of the macroscopically smart mechanis...This paper presents an investigation on the active vibration control of flexible linkage mechanisms featuring piezoceramic actuators and strain gauge sensors. The dynamic equation of the macroscopically smart mechanism is decoupled by means of the complex mode theory. The state-space expression of the controlled system is developed, which includes the system noise and the observation noise. Moreover, a discrete linear quadratic Gaussian (LQG) state feedback controller and a discrete Kalman filter are designed separately. Finally, the proposed method is applied to the on-line vibration control of a macroscopically smart mechanism. The experimental results reveal that the strain amplitude of the flexible link ig suppressed by 80% and the dynamic performance of mechanism has been ameliorated significantly.展开更多
A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The st...A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.展开更多
There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this a...There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.展开更多
This paper gives and verifies a mathematical model with only one argument which determines the movement parameters of any point in a plane four-bar linkage on the basis of the analysis of mining machinery linkages. C ...This paper gives and verifies a mathematical model with only one argument which determines the movement parameters of any point in a plane four-bar linkage on the basis of the analysis of mining machinery linkages. C A A (computer aided analysis) based on the mathemetical model can be used to make not only the quick and accurate analysis and design of mining machinery linkages but also the movement analysis and optimization design of any other plane four-bar linkage.展开更多
A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without consi...A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.展开更多
This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twis...This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.展开更多
The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism,compact structure,and small motion space.This paper presents a new design a...The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism,compact structure,and small motion space.This paper presents a new design and prototype of a worm-inspired metameric robot with a movement pattern similar to that of earthworms.The robot consists of multiple telescopic modules connected in series through joint modules.The telescopic module mimics the contraction and elongation motion modes of the earthworm segments.A kinematic and dynamic analysis is conducted on the telescopic module,and an input torque calculation method is provided to ensure sufficient friction between the robot and the pipe wall.The gait modes of the prototype robot for straight and turning locomotion are introduced,and these modes are extended to robots constructed by different numbers of telescopic modules.In addition,a method is proposed to increase the friction between the robot and the pipe wall in the aforementioned gait modes without changing the robot structure,thereby improving the robot’s motion ability in pipelines.The theoretical model of gait modes has also been validated through gait experiments.The findings of this paper would provide a useful basis for the design,modeling,and control of future worm inspired robots.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51105089)Shenzhen Engineering Laboratory of Industrial Robots and Systems(Grant No.A224412028)Shenzhen Engineering Laboratory of Performance Robots at Digital Stage(Grant No.[2014]1507)
文摘The conventional linkage mechanisms with compliant joint have been widely studied and implemented for increasing the adaptability of the mechanism to external contacts. However, the analysis of how compliant joints in linkage mechanism can reduce the energy consumption isn't still studied deeply. In a mobile service robot head, the actions of blinking the eyes and moving the eyeballs are realized by the planar linkage mechanism respectively. Therefore, minimizing the driving torques through motion trajectories for the linkage mechanism, which will be beneficial to extend the working time for mobile service robots. The dynamic modeling of the linkage mechanism with springs-loaded compliant joint is established. An optimization procedure for obtaining the optimal parameters of springs is proposed for minimizing the max value of driving torques within a range of desired operating conditions. The Simulations prove that the linkage mechanism with compliant joints can effectively reduce the driving torques, and reduce the energy consumption consequently. The framework can also be applied in other similar applications to reduce the driving torque and save energy. Compared with previous efforts, this is the first attempt that the linkage mechanism with complaint joint is applied in the robot head for reducing the driving torque.
基金supported by the National Natural Science Foundation of China(No.51275365)the National High-tech R&D Program (863 Program ) (No. 2014AA041504)
文摘The uncertainty of the mechanism motion error is mostly caused by the manufacturing process,so the motion error cannot be effectively predicted at the design phase.The problems of manufacturing complexity and the relationship between design and manufacturing are analyzed,and the influence of dimensional tolerance and fit tolerance on the motion accuracy of the system is considered in the design process.Then based on the Monte Carlo simulation,an optimal design model of planar linkage mechanism is set up.A typical offset slider-crank mechanism is used as an illustrative example to carry out the optimal design.Compared with the result of typical robustness design,the similar variation characteristics of the mean value and the standard deviation can be found,so the proposed method is effective.The method is furthermore applied in the optimization of the schemes with different fit tolerances and the prediction of motion errors in the design phase is achieved.A set of quantitative evaluation system for mechanism optimal design is provided.Finally,a basic strategy is presented to balance the motion precision and manufacturing cost.
文摘The dynamic analysis of a one-DOF RSRRR spatial linkage mechanism, including four rotational joints R and one spherical joint S, is presented in the paper. It is assumed that friction occurs in the rotational joints, whereas a spherical joint can be treated as an ideal one. The mechanism in the form of a closed-loop kinematic chain was divided by cut joint technique into two open-loop kinematic chains in place of the spherical joint. Joint coordinates and homogeneous transformation matrices were used to describe the geometry of the system. Equations of the chains' motion were derived using formalism of Lagrange equations. Cut joint constraints and reaction forces, acting in the cutting place---i.e, in the spherical joint, have been introduced to complete the equations of motion. As a consequence, a set of differential-algebraic equations has been obtained. In order to solve these equations, a procedure based on differentiation twice of the formulated constraint equations with respect to time has been applied. In order to determine values of friction torques in the rotational joints in each integrating step of the equations of motion, joint forces and torques were calculated using the recursive Newton-Euler algorithm taken from robotics. For the requirements of the method, a model of a rotational joint has been developed. Some examples of results of the numerical calculations made have been presented in the conclusions of the paper.
文摘<b><span style="font-family:Verdana;">Objective:</span></b><span style="font-family:""> </span><span style="font-family:Verdana;">To </span><span style="font-family:""><span style="font-family:Verdana;">put forward suggestions to improve the linkage mechanism between China’s essential medicine list and healthcare insurance medicine list. </span><b><span style="font-family:Verdana;">Methods:</span></b><span style="font-family:Verdana;"> Comparative study of the organization setting, selection criteria, adjustment procedures, and reimbursement of essential medicine list and healthcare insurance medicine list, containing</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">both the foreign experience and China’s status quo. </span><b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">When two lists exist at the same time, they are often managed separately abroad, setting more selection criteria for the essential medicine, and giving the essential medicine </span></span><span style="font-family:Verdana;">a </span><span style="font-family:""><span style="font-family:Verdana;">higher payment ratio. The two lists in China are managed and adjusted separately, but lack of con</span><span style="font-family:Verdana;">nection</span></span><span style="font-family:Verdana;">.</span><span style="font-family:Verdana;"> As a result,</span><span style="font-family:""> </span><span style="font-family:Verdana;">some essential medicines cannot be reimbursed</span><span style="font-family:""><span style="font-family:Verdana;">. </span><b><span style="font-family:Verdana;">Conclusion:</span></b><span style="font-family:Verdana;"> The two lists’ linkage mechanism needs to be improved. It is recommended to </span></span><span style="font-family:Verdana;">make it </span><span style="font-family:Verdana;">clear that essential medicines should be selected from the healthcare insurance medicine list, and enhance the consistency of medicine evaluation through mutually scientific evidence.
文摘This paper proposes a novel underactuated finger mechanism based on a motion coupling and shape-adaptive linkage design that combines anthropomorphic free motion and adaptive grasping. The proposed three-joint finger mechanism with one active Degree of Freedom (DOF) consists of a five-linkage meehanism in the proximal phalanx and a mechanism comprising two parallel planar four-bar linkages in the middle phalanx. The respective mechanism allows the simultaneously rotation of their corresponding pha- langes in the plane before making contact with an object, and can fully envelop an object, even if certain phalanges are blocked. The duel parallel four-bar linkage mechanism is adopted to improve the grasping capacity of the distal phalanx. An optimal design of the finger is presented according to anthropomorphic phalanx trajectories and maximized grasping forces obtained with consideration for the angular velocity relationships of the three phalanges and their force transmission performances. The functionality of the proposed finger mechanism is verified through multiple simulations and grasping experiments using a prototype finger.
基金supported by the National Natural Science Foundation of China(21908059)the China Postdoctoral Science Foundation(2019M651419)+5 种基金the Shanghai Sailing Program(19YF1410900,21YF1451700)the Natural Science Foundation of Shanghai(22ZR1415400)the Fundamental Research Funds for the Central Universities(22221818014)the Shanghai Post-doctoral Excellence Program(2018011)the Foundation of State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology,Shandong Academy of Sciences(GZKF202031)the Open Funding Project of the State Key Laboratory of Bioreactor Engineering。
文摘Gaseous therapy based on nitric oxide(NO),as a potential anti-tumor treatment strategy,has attracted great attention,but the targeted and controlled gas release in the tumor site still remains a challenge.In addressing these difficulties,a near-infrared(NIR)light-triggered NO release nanogenerator with a“linkage mechanism”was designed on the basis of sodium nitroprussidedoped mesoporous Prussian blue nanoparticles,in which the outer structure was modified with p H-sensitive gatekeeper chitosan and tumor-targeting agent folic acid.The“linkage mechanism”can achieve precise release of NO under the control of photothermal effect at tumor site,which can couple photothermal therapy and gas therapy to address the premature release of gas during transportation.Meanwhile,the amount of released gas can be controlled by adjusting the irradiation time and laser intensity.Furthermore,as-fabricated nanocomposites hold high photothermal conversion efficiency under NIR laser irradiation,resulting in the on-demand release of NO and chemotherapy drugs.The released NO can inhibit the expression of hypoxiainducible factorα(HIF-1α)and alleviate the hypoxic tumor microenvironment,thereby enhancing the efficacy of chemotherapy.Moreover,in vitro and in vivo experiments exhibited remarkable antitumor efficiency,and the synergistic gas/chemo/photothermal therapy of deep tumors was achieved.These findings indicate an effective strategy to stimulate further the development of deep tumor therapy,which may provide new insights into other NO-related medical applications.
基金Project of Industry and University Cooperation and Collaborative Education of Ministry of Education“Research on Teaching Ability Improvement and Practice Reform of International Economics and Trade Courses under the Background of Mathematics and Intelligence”(230711260007320)Research and Practice Project of Higher Education Teaching Reform in Henan Province“Research and Practice of‘Three Special and One Industrialization’Mode of Academic Talents Training in Economics and Management in Universities with Industry Characteristics”(2024SJGLX0344)Henan Provincial Education Science Planning Project"Research on the Interactive Influence Mechanism between Henan Provincial Higher Education Informatization and New Quality Productivity"(2025JKZD21)。
文摘The introduction of the concept of new quality productivity has attracted a great deal of attention in the educational community.However,there is an urgent need to align it with policy orientation and advancements in science and technology moving forward.Colleges and universities themselves should be the leaders of advanced thinking and scientific and technological development,and play their due roles in line with the development of the times to provide quality and urgent talents and intellectual support.For this reason,this paper proposes that universities should consciously establish a set of regular operation mechanisms,namely,the linkage mechanism between“social demand”and“connotation construction,”and operate regularly under the guarantee of the system.This enables universities to lead or grasp the pulse of scientific and technological development,constantly improve the level of connotation construction,promote high-quality employment,and provide high-quality services for modernization and the great rejuvenation of the Chinese nation.
基金supported by the Climbling Project of Taishan Scholar in Shandong Province (No.tspd20210313)National Natural Science Foundation of China (Grant No.51874190,52079068,41941019,52090081 and 52074168)+3 种基金Taishan Scholar in Shandong Province (No.tsqn202211150)Outstanding Youth Fund Project in Shandong Province (No.ZQ2022YQ49)the State Key Laboratory of Hydroscience and Engineering,China (No.2021-KY-04)support from the G.Albert Shoemaker endowment.
文摘Multi-seam mining often leads to the retention of a significant number of coal pillars for purposes such as protection,safety,or water isolation.However,stress concentration beneath these residual coal pillars can significantly impact their strength and stability when mining below them,potentially leading to hydraulic support failure,surface subsidence,and rock bursting.To address this issue,the linkage between the failure and instability of residual coal pillars and rock strata during multi-seam mining is examined in this study.Key controls include residual pillar spalling,safety factor(f.),local mine stiffness(LMS),and the post-peak stiffness(k)of the residual coal pillar.Limits separating the two forms of failure,progressive versus dynamic,are defined.Progressive failure results at lower stresses when the coal pillar transitions from indefinitely stable(f,>1.5)to failing(f,<1.5)when the coal pillar can no longer remain stable for an extended duration,whereas sud-den(unstable)failure results when the strength of the pillar is further degraded and fails.The transition in mode of failure is defined by the LMS/k ratio.Failure transitions from quiescent to dynamic as LMS/k.<1,which can cause chain pillar instability propagating throughout the mine.This study provides theoretical guidance to define this limit to instability of residual coal pillars for multi-seam mining in similar mines.
基金National Natural Science Foundation of China(No.11402186)Innovative Research Team in University of Tianjin,China(No.TD13-5037)Natural Science Foundation of Tianjin,China(Nos.14JCQNJC05600 and 18JCQNJC05300)。
文摘In order to further analyze the influence of clearance on the kinematic performance of spatial linkage weft insertion mechanism,it is necessary to study the dynamic characteristics of contact impact force model with the variable stiffness and damping coefficient.Firstly,the parameters in the output process of the system are solved by describing of the flexible joint clearance.Then,based on Lankarani-Nikravesh contact force model,the contact impact stiffness and damping coefficient is modified from fixed values to time-varying coefficients.The dynamic model of spatial linkage weft insertion mechanism with modified clearance is established by Lagrange method,and the dynamic characteristics of the system are calculated.The results show that the joint clearance can directly affect the output performance of the mechanism.With the increase of the clearance value,the curve fluctuations of acceleration,driving torque and collision force are obvious,and it will be further intensified with the increase of spindle speed,which greatly affects the stability of mechanism and fabric quality.Finally,the virtual prototype is established by the SolidWorks software and simulated by the ADAMS software.The simulation results are compared with the numerical results,which verifies the accuracy of the modeling method in this paper.
基金funding support from Natural Science Foundation of Shandong Province(Grant No.ZR2021QE187).
文摘Understanding the mechanical properties and multiscale failure mechanism of frozen soft rock is an important prerequisite for the construction safety of tunnels,artificially frozen ground and other infrastructure in cold regions.In this study,the triaxial compression test are performed on mudstone in the weakly cemented soft rock strata in the mining area of western China,and the mechanical characteristics and failure mechanism of weakly cemented mudstone are systematically investigated under the combined action of freezing and loading.Furthermore,the quantitative relationship between the microstructural parameters and the macroscopic strength and deformation parameters is established based on fractal theory.Thus,the failure mechanism of frozen weakly cemented mudstone is revealed on both micro- and macro-scales.The results show that temperature and confining pressure significantly affects the elastic modulus and peak strength of weakly cemented mudstone.With decreasing temperature,the compressive strength increases,while the corresponding peak strain decreases gradually.On the deformation curve,the plastic deformation stage is shortened,and the brittle fracture feature at the post-peak stage is more prominent,and the elastic modulus correspondingly increases with decreasing temperature.Under low-temperature conditions,most of the weakly cemented mudstone undergoes microscopic shear failure along the main fracture surface.The micro-fracture morphology characteristics of weakly cemented mudstone under different temperatures are quantified via the fractal dimension,and an approximately exponential relationship can be obtained among the fractal dimension and the temperature,compressive strength and elastic modulus.
基金National Basic Research Program of China(973 Program,No.2004CB719405)National Hi-tech Research and Development Program of China (863 Program,No.2006AA04Z107)National Natural Science Foundation of China (No.50575084,No.50675082)
文摘Clearance at turning pair has a strong impact on the kinetic accuracy of linkage, but there is short of a generic model to analyze it so far. Clearance error, input error, and manufacturing tolerance of links are taken into consideration as the random variables synthetically. The kinematics and dynamics accuracy analysis models for planar linkages with multiple clearances at joints are built up as well. At last a typical planar linkage is selected for nurnerical illustration. These models stated in matrix resolve the relativity of output parameter errors of mechanism and therefore are of vital significance for the reliability analysis and synthesis of mechanism with clearances.
文摘This paper presents an investigation on the active vibration control of flexible linkage mechanisms featuring piezoceramic actuators and strain gauge sensors. The dynamic equation of the macroscopically smart mechanism is decoupled by means of the complex mode theory. The state-space expression of the controlled system is developed, which includes the system noise and the observation noise. Moreover, a discrete linear quadratic Gaussian (LQG) state feedback controller and a discrete Kalman filter are designed separately. Finally, the proposed method is applied to the on-line vibration control of a macroscopically smart mechanism. The experimental results reveal that the strain amplitude of the flexible link ig suppressed by 80% and the dynamic performance of mechanism has been ameliorated significantly.
基金Projects(50175031, 50565001) supported by the National Natural Science Foundation of China project (2003203) supported by the New Century Ten Hundred and Thousand Talent Project Special Foundation of Guangxi+1 种基金 project(0542005) supported by Guangxi Science Foundation project(205119) supported by the Key Project of Chinese Ministry of Education
文摘A four-bar linkage mechanism with links fabricated from symmetric laminates was studied. The mass matrix of the beam dement was obtained in light of the mass distribution characteristics of composite materials. The stiffness matrix of the beam element was derived from the constitutive equations of each layer and the relationship between the strain distribution and the node displacement of the beam element. The specific damping capacity of the beam element was analyzed according to the strain distribution of the beam element and the strain energy dissipation caused by vibration in each direction of each layer; and the damping coefficients were obtained according to the principle that the total energy dissipation of the beam element was equal to the work done by the equivalent damping force during a cycle of vibration, from which the damping matrix of the dynamic equations was obtained. Using the finite element method, the dynamic analytic model of the mechanism was obtained. The dynamic responses and natural frequency of the mechanism were obtained by simulation, respectively, and those of the simulation obtained by the proposed model were analyzed and compared with the results obtained by the conventional model. The work provides theoretical basis to a certain extent for the further research on nonlinear vibration characteristics and optimum design of this kind of mechanism.
基金Sponsored by the Shandong Key Research and Development Public Welfare Program(Grant No.2019GGX104011)the Natural Science Foundation of Shandong Province(Grant No.ZR2017MEE066).
文摘There are clearances in mechanism because of manufacture and assembly error,which reduces operation life and working accuracy of mechanism and has a great impact on dynamical responses.At the moment,research in this area mainly focuses on single degree⁃of⁃freedom mechanism considering one clearance,while research of multi⁃DOF mechanism considering multi⁃clearance is less.With the purpose of studying the dynamical characteristics of complex multi⁃DOF mechanism with multi⁃clearances,a dynamic model was developed.The dynamic responses of 2⁃DOF mechanism with two clearances under different positions,values,and numbers of clearance were analyzed.The displacement,velocity,acceleration,collision force,and the axis trajectory at clearance were then given.In addition,there is a limited amount of literature on chaotic phenomena,which mainly focuses on the chaotic phenomena of end⁃effector of mechanism.But in this paper,the non⁃linear characteristics were analyzed by chaotic phenomenon of clearance joint,then chaotic phenomenon was identified by Poincarémappings and phase diagrams.Bifurcation diagrams were given.The results will offer a reliable technical support for the study of dynamical responses of planar mechanisms and the analysis of chaotic phenomena.
文摘This paper gives and verifies a mathematical model with only one argument which determines the movement parameters of any point in a plane four-bar linkage on the basis of the analysis of mining machinery linkages. C A A (computer aided analysis) based on the mathemetical model can be used to make not only the quick and accurate analysis and design of mining machinery linkages but also the movement analysis and optimization design of any other plane four-bar linkage.
基金National Natural Science Foundation of China(No.51175475)Natural Science Foundation of Zhejiang Province,China(No.LY14E050027)
文摘A 3D model of the spatial four-bar weft insertion mechanism was built with unigraphics NX(UG) according to the actual requirement,and dynamics simulation was carried out by importing the model into ADAMS.Without considering the clearance,the motion characteristic curve of the sword belt was generated through ADAMS combined with MATLAB.In this paper the hinge between the rod and the sector gear was selected as an example with different values of clearance,outputting the motion characteristic curve of the sword belt.Finite element analysis(FEA)was conducted,the flexible body was generated by importing the forked frame into ANSYS,and flexible dynamics simulation was carried out by importing the flexible body into ADAMS to replace the rigid rod.A comprehensive comparison of the output characteristics of the sword belt was conducted in the consideration of the clearance or flexible.Analysis of the force on the left hinge of the rod was carried out with the ADAMS post processing module.With the same clearance,considering the flexibility,amplitude of fluctuation of the force on the hinge increased obviously.
文摘This paper addresses mechanisms for active flapping and twisting of robotic wings and assesses flying effectiveness as a function of twist angle. Unlike the flapping motion of bird wings, insects generally make a twisting motion at the root of their wings while flapping, which makes it possible for them to hover in midair. This work includes the development of a Voice Coil Motor (VCM) because a flapping-wing air vehicle should be assembled with a compact actuator to decrease size and weight. A linkage mechanism is proposed to transform the linear motion of the VCM into the flapping and twisting motions of wings. The assembled flapping-wing air vehicle, whose weight is 2.86 g, produces an average positive vertical force proportional to the twist angle. The force saturates because the twist angle is mechanically limited. This work demonstrates the possibility of developing a flapping-wing air vehicle that can hover in midair using a mechanism that actively twists the roots of wings during flapping.
基金the financial support from the National Natural Science Foundation of China(Grants No.52275031).
文摘The earthworm has been attracted much attention in the research and development of biomimetic robots due to their unique locomotion mechanism,compact structure,and small motion space.This paper presents a new design and prototype of a worm-inspired metameric robot with a movement pattern similar to that of earthworms.The robot consists of multiple telescopic modules connected in series through joint modules.The telescopic module mimics the contraction and elongation motion modes of the earthworm segments.A kinematic and dynamic analysis is conducted on the telescopic module,and an input torque calculation method is provided to ensure sufficient friction between the robot and the pipe wall.The gait modes of the prototype robot for straight and turning locomotion are introduced,and these modes are extended to robots constructed by different numbers of telescopic modules.In addition,a method is proposed to increase the friction between the robot and the pipe wall in the aforementioned gait modes without changing the robot structure,thereby improving the robot’s motion ability in pipelines.The theoretical model of gait modes has also been validated through gait experiments.The findings of this paper would provide a useful basis for the design,modeling,and control of future worm inspired robots.