The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt (CAOB). The Linxi Formation is composed of slate, siltstone, sandstone and plant, lamellibranch microfo...The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt (CAOB). The Linxi Formation is composed of slate, siltstone, sandstone and plant, lamellibranch microfossils in the associated strata. Major and trace element data (including REE) for sandstones from the formation indicate that these rocks have a greywacke protolith and have been deposited during a strong tectonic activity. LA-ICPMS U-Pb dating of detrital zircons yield ages of 1801 to 238 Ma for four samples from the Linxi Formation. 425-585 Ma, together with the ~500 Ma age for the metamorphism event previously determined for Northeast China, indicates that their provenance is the metamorphic rocks of Pan-African age that have a tectonic affinity to NE China. A few older zircons with U-Pb ages at 1689-1801 Ma, 1307 1414 Ma, 593-978 Ma are also present, revealing the Neoproterozoic history of NE China. The youngest population shows a peak at ca. 252 Ma, suggesting that the main deposition of the Linxi Formation was at late Permain. Moreover, the ca. 250 Ma zircon grains of all four samples yield weighted mean ^206pb/^238U ages of 250 ± 3 Ma, 248 ± 3 Ma, 249 ± 3 Ma, and 250 ± 2 Ma, respectively. These ages, together with the youngest zircon age in the sample ZJB-28 (ca. 238 Ma), suggest that the deposition of the Linxi Formation extended to the early Triassic. Combining with previous results, we suggest that the final collision of the Central Asian Orogenic Belt (CAOB) in the southern of Linxi Formation, which located in the Solonker-Xra Moron-Changchun suture, and the timing for final collision should be at early Triassic.展开更多
In order to explore the oil and gas resource prospects in the Carboniferous–Permian strata in northern Songliao Basin,geological survey boreholes(HFD 1 and HFD 2)were drilled in the area,and thick dark mudstone and s...In order to explore the oil and gas resource prospects in the Carboniferous–Permian strata in northern Songliao Basin,geological survey boreholes(HFD 1 and HFD 2)were drilled in the area,and thick dark mudstone and slate of the Upper Permian Linxi Formation were encountered.Source rock geochemistry analysis of the samples show that the organic matter abundance of the Upper Permian Linxi Formation source rock in the north of Songliao Basin is high,which belongs to medium to good source rock.The organic matter belongs to type Ⅱ,and it is in the evolution stage of highly mature to over mature.The Pr/Ph ratios of the source rocks range from 0.16 to 0.93,with an average of 0.53.The phytane predominance is obvious,and indicates a strong reduction to reduction sedimentary environment,which is conducive to the preservation of organic matter.Pr/nC_(17),Ph/nC_(18) and C_(27)–C_(28)–C_(29) regular steranes indicate that the organic matter was derived from a mixture of vascular plants and aquatic organisms such as algae,and is mainly contributed by phytoplankton.Through comprehensive analysis,it is considered that the source rocks of the Upper Permian Linxi Formation in northern Songliao Basin have entered the gas generation stage and have shale gas exploration prospects.展开更多
Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the fol...Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the folding and lifting of the Xing-Meng Trough. The focus of thses issues is the Late Permian sedimentary environment, which is generally considered to be either an exclusively continental environment or from the closed inland sea environment in the Early to Middle stage to continental lacustrine environment in the late stage. In recent years, we have successively discovered abundant typical marine fossils (e.g., bryozoans and calcareous algae) in the Upper Permian thick limestone layer from Linxi County and Ar Horqin Banner in eastern region of Inner Mongolia and Jiutain County in Jilin Province. These significant findings have attracted the attention from fellow academics.展开更多
A new species Ufadendron elongatum sp.nov.,attributed to the family Tomiodendraceae Naugolnykh,is represented by two well-preserved stems in the collection under study.This new species was recently discovered from the...A new species Ufadendron elongatum sp.nov.,attributed to the family Tomiodendraceae Naugolnykh,is represented by two well-preserved stems in the collection under study.This new species was recently discovered from the Upper Permian Linxi Formation in the Jalaid locality,the Inner Mongolia Autonomous region,China.The genus Ufadendron is characterized as having the long fusiform leaf cushions,with small and rounded leaf scar containing a central point-like scar which is situated at the upper part of leaf cushion;the infrafoliar bladder of fusiform shape positioned in the middle part of leaf cushion;the wings and heel well-developed in the lateral parts and the lower part of leaf cushion,respectively.The new species is different from the type species U.ufaense(Naugolnykh 2014)collected from the Lower Permian of the Cis-Urals,western limits of Angaraland,in the elongated leaf cushion and in the well-pronounced heel.It should be noted,that a vascular bundle(conductive strand)occupied the middle part of the central point-like scar.So far,only 5 genera of Angaran elements among lycopsids have been discovered in the region geographically belonging to Angaran Realm(Phytogeoprovince)in China.The new species U.elongatum not only enlarges our knowledge on the taxonomy of Tomiodendraceae lycopsids,and also provides an opportunity to understand the difference between Angaran and Cathaysian floras in paleoclimatic context.展开更多
基金funded by grants from the Chinese Ministry of Science and Technology(Grant No.2013CB429802)National Natural Science Foundation of China(Grant Nos.41390441,41190075, and 41272241)the Chinese Geological Survey(Grant No. 1212011120153)
文摘The Linxi Formation occupies an extensive area in the eastern Inner Mongolia in the Central Asian Orogenic Belt (CAOB). The Linxi Formation is composed of slate, siltstone, sandstone and plant, lamellibranch microfossils in the associated strata. Major and trace element data (including REE) for sandstones from the formation indicate that these rocks have a greywacke protolith and have been deposited during a strong tectonic activity. LA-ICPMS U-Pb dating of detrital zircons yield ages of 1801 to 238 Ma for four samples from the Linxi Formation. 425-585 Ma, together with the ~500 Ma age for the metamorphism event previously determined for Northeast China, indicates that their provenance is the metamorphic rocks of Pan-African age that have a tectonic affinity to NE China. A few older zircons with U-Pb ages at 1689-1801 Ma, 1307 1414 Ma, 593-978 Ma are also present, revealing the Neoproterozoic history of NE China. The youngest population shows a peak at ca. 252 Ma, suggesting that the main deposition of the Linxi Formation was at late Permain. Moreover, the ca. 250 Ma zircon grains of all four samples yield weighted mean ^206pb/^238U ages of 250 ± 3 Ma, 248 ± 3 Ma, 249 ± 3 Ma, and 250 ± 2 Ma, respectively. These ages, together with the youngest zircon age in the sample ZJB-28 (ca. 238 Ma), suggest that the deposition of the Linxi Formation extended to the early Triassic. Combining with previous results, we suggest that the final collision of the Central Asian Orogenic Belt (CAOB) in the southern of Linxi Formation, which located in the Solonker-Xra Moron-Changchun suture, and the timing for final collision should be at early Triassic.
基金Supported by the National Key Research and Development Program of China(No.2019YFC0605404)China Geological Survey Project(Nos.DD20221664 and DD20190097)。
文摘In order to explore the oil and gas resource prospects in the Carboniferous–Permian strata in northern Songliao Basin,geological survey boreholes(HFD 1 and HFD 2)were drilled in the area,and thick dark mudstone and slate of the Upper Permian Linxi Formation were encountered.Source rock geochemistry analysis of the samples show that the organic matter abundance of the Upper Permian Linxi Formation source rock in the north of Songliao Basin is high,which belongs to medium to good source rock.The organic matter belongs to type Ⅱ,and it is in the evolution stage of highly mature to over mature.The Pr/Ph ratios of the source rocks range from 0.16 to 0.93,with an average of 0.53.The phytane predominance is obvious,and indicates a strong reduction to reduction sedimentary environment,which is conducive to the preservation of organic matter.Pr/nC_(17),Ph/nC_(18) and C_(27)–C_(28)–C_(29) regular steranes indicate that the organic matter was derived from a mixture of vascular plants and aquatic organisms such as algae,and is mainly contributed by phytoplankton.Through comprehensive analysis,it is considered that the source rocks of the Upper Permian Linxi Formation in northern Songliao Basin have entered the gas generation stage and have shale gas exploration prospects.
基金financially supported by the National Natural Science Foundation of China (grant No.41572098)the geological survey project (grants No.121201103000161114 and 121201103000150019 ) of the China Geological Survey
文摘Objective Two important geological issues have long been controversial in the Xing-Meng area of North China. The first concerns the final closure of Paleo-Asian Ocean in Xing-Meng area, and the other concerns the folding and lifting of the Xing-Meng Trough. The focus of thses issues is the Late Permian sedimentary environment, which is generally considered to be either an exclusively continental environment or from the closed inland sea environment in the Early to Middle stage to continental lacustrine environment in the late stage. In recent years, we have successively discovered abundant typical marine fossils (e.g., bryozoans and calcareous algae) in the Upper Permian thick limestone layer from Linxi County and Ar Horqin Banner in eastern region of Inner Mongolia and Jiutain County in Jilin Province. These significant findings have attracted the attention from fellow academics.
基金financially supported by the Geological Survey of China(No.DD20160048-02)the National Natural Science Foundation of China(No.31470324)+2 种基金the Project 111 of China(No.B06008)the Doctoral Fund of Shenyang Normal University(No.054/55440109030)supported by the State Program(Geological Institute,Russian Acad.Sci.)(No.0135-2019-0044)the Russian Government to support the Program of Competitive Growth of Kazan Federal University among World’s Leading Academic Centers
文摘A new species Ufadendron elongatum sp.nov.,attributed to the family Tomiodendraceae Naugolnykh,is represented by two well-preserved stems in the collection under study.This new species was recently discovered from the Upper Permian Linxi Formation in the Jalaid locality,the Inner Mongolia Autonomous region,China.The genus Ufadendron is characterized as having the long fusiform leaf cushions,with small and rounded leaf scar containing a central point-like scar which is situated at the upper part of leaf cushion;the infrafoliar bladder of fusiform shape positioned in the middle part of leaf cushion;the wings and heel well-developed in the lateral parts and the lower part of leaf cushion,respectively.The new species is different from the type species U.ufaense(Naugolnykh 2014)collected from the Lower Permian of the Cis-Urals,western limits of Angaraland,in the elongated leaf cushion and in the well-pronounced heel.It should be noted,that a vascular bundle(conductive strand)occupied the middle part of the central point-like scar.So far,only 5 genera of Angaran elements among lycopsids have been discovered in the region geographically belonging to Angaran Realm(Phytogeoprovince)in China.The new species U.elongatum not only enlarges our knowledge on the taxonomy of Tomiodendraceae lycopsids,and also provides an opportunity to understand the difference between Angaran and Cathaysian floras in paleoclimatic context.