This paper deals with the problem of the type triangle open_H f+ f^p =O inquaternionic Heisenberg group, where triangle open_H is the quaternionic Heisenberg Laplacian. Itis proved that, under suitable conditions on p...This paper deals with the problem of the type triangle open_H f+ f^p =O inquaternionic Heisenberg group, where triangle open_H is the quaternionic Heisenberg Laplacian. Itis proved that, under suitable conditions on p and /, the only solution of triangle open_H f+ f^p=O.展开更多
In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from |z〉to|sz-rz*〉 corresponds to the motion ...In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from |z〉to|sz-rz*〉 corresponds to the motion from a point z(q,p) to another point sz-rz* with |s|2-|r|2=1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.展开更多
In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,...In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).展开更多
In this article, we study the nonexistence of solution with finite Morse index for the following Choquaxd type equation -△u=∫Rn|u(y)|p/|x-y|αdy|u(x)|p-2u(x) in RN,where N≥3,0〈α〈min {4,N}.Suppose tha...In this article, we study the nonexistence of solution with finite Morse index for the following Choquaxd type equation -△u=∫Rn|u(y)|p/|x-y|αdy|u(x)|p-2u(x) in RN,where N≥3,0〈α〈min {4,N}.Suppose that 2 〈 p 〈2N-α/N-2,we will show that this problem does not possess nontrivial solution with finite Morse index. While for p =2N-α/N-2,if i(u) 〈∞, then we have ∫RN∫RN|u(x)|p|u(y)|p dxdy 〈∞ and ∫RN|△u|2 dx=|∫RN∫RN|u(x)|p/|x-y|a dxdy.展开更多
In this paper, we classify Mobius invariant differential operators of second orderin two-dimensional Euclidean space, and establish a Liouville type theorem forgeneral Mobius invariant elliptic equations. The equation...In this paper, we classify Mobius invariant differential operators of second orderin two-dimensional Euclidean space, and establish a Liouville type theorem forgeneral Mobius invariant elliptic equations. The equationsare naturally associ-ated with a continuous family of convex cones Γ_(p) in R^(2), with parameter p∈[1,2],joining the half plane Γ_(1) := {(λ_(1),λ_(2)) : λ_(1)+λ_(2)> 0} and the first quadrant Γ_(2) := {(λ_(1),λ_(2)) : λ_(1),λ_(2)> 0}. Chen and C. M. Li established in 1991 a Liouvilletype theorem corresponding to Γ_(1) under an integrability assumption on the solution. The uniqueness result does not hold without this assumption. The Liouville typetheorem we establish in this paper for Γ_(p),1 < p ≤ 2, does not require any additionalassumption on the solution as for Γ_(1). This is reminiscent of the I iouville type theo-rems in dimensions n≥3 established by Caffarelli, Gidas and Spruck in 1989 andby A.B. Li and Y. Y. Li in 2003-2005, where no additional assumption was neededeither. On the other hand, there is a striking new phenomena in dimension n=2 that Γ_(p) ,for p=1 is a sharp dividing line for such uniqueness result to hold without anyfurther assumption on the solution. In dimensions n≥3, there is no such dividing line.展开更多
We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(...We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(|x- y|n)dx, y ∈?R+n,where n 3, ωn is the volume of the unit ball in Rn. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Hang et al.(2008).With natural structure conditions on f and g, we classify the positive solutions of the above system based on the method of moving spheres in integral form and the inequality mentioned above.展开更多
In this paper,we study the Kato's inequality on locally finite graphs.We also study the application of Kato's inequality to Ginzburg-Landau equations on such graphs.Interesting properties of elliptic and parab...In this paper,we study the Kato's inequality on locally finite graphs.We also study the application of Kato's inequality to Ginzburg-Landau equations on such graphs.Interesting properties of elliptic and parabolic equations on the graphs and a Liouville type theorem are also derived.展开更多
We investigate the nonnegative solutions of the system involving the fractional Laplacian:{(-△)^αui(x)=fi(u),x∈R^n,i=1,2,…,m, u(x)=(u1(x),u2(x),……,um(x)),where 0 〈 α 〈 1, n 〉 2, fi(u), 1 4...We investigate the nonnegative solutions of the system involving the fractional Laplacian:{(-△)^αui(x)=fi(u),x∈R^n,i=1,2,…,m, u(x)=(u1(x),u2(x),……,um(x)),where 0 〈 α 〈 1, n 〉 2, fi(u), 1 4 ≤ 4 ≤m, are real-valued nonnegative functions of homogeneous degree Pi ≥0 and nondecreasing with respect to the independent variables ul, u2,..., urn. By the method of moving planes, we show that under the above conditions, all the positive solutions are radially symmetric and monotone decreasing about some point x0 if Pi = (n + 2α)/(n- 2α) for each 1 ≤ i ≤ m; and the only nonnegative solution of this system is u ≡ 0 if 1〈pi〈(n+2α)/(n-2α) for all 1≤i≤m.展开更多
In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give ...In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result.展开更多
In this paper,the authors study the gradient estimates for positive weak solutions to the following p-Laplacian equation△_(p)u+au^(σ)=0 on complete noncompact Riemannian manifold,where a,σare two nonzero real const...In this paper,the authors study the gradient estimates for positive weak solutions to the following p-Laplacian equation△_(p)u+au^(σ)=0 on complete noncompact Riemannian manifold,where a,σare two nonzero real constants with p≠2.Using the gradient estimate,they can get the corresponding Lionville theorem.On the other hand,by virtue of the Poincare inequality,they also obtain a Liouville theorem under some integral conditions with respect to positive weak solutions.展开更多
We prove the uniform Hölder bounds of solutions to a singularly perturbed elliptic system arising in competing models in population dynamics. In this system, two species compete to some extent throughout the whol...We prove the uniform Hölder bounds of solutions to a singularly perturbed elliptic system arising in competing models in population dynamics. In this system, two species compete to some extent throughout the whole domain but compete strongly on a subdomain. The proof relies upon the blow up technique and the monotonicity formula by Alt, Caffarelli and Friedman.展开更多
One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equatio...One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.展开更多
Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, dμ = e^h(x) dV(x) the weighted measure and △μ,p the weighted p-Laplacian. In this paper we consider...Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, dμ = e^h(x) dV(x) the weighted measure and △μ,p the weighted p-Laplacian. In this paper we consider the non-linear elliptic equation △μ,pu=-λμ,p|u|^p-2ufor p ∈ (1, 2). We derive a sharp gradient estimate for positive smooth solutions of this equation. As applications, we get a Harnack inequality and a Liouville type theorem..展开更多
Since the Jost solutions of the DNLS equation does not tend to the free Jost solutioins as |λ|→∞, the usual inverse scattering transform (IST) must be revised. Beside the Kaup and Newell's approach, we propose...Since the Jost solutions of the DNLS equation does not tend to the free Jost solutioins as |λ|→∞, the usual inverse scattering transform (IST) must be revised. Beside the Kaup and Newell's approach, we propose a simple revision in constructing the equations of IST, where the usual Zakharov-Shabat kern is revised by multiplying λ^-2 or λ^-1. To justify the revision we show that the Jost solutions obtained do satisfy the pair of compatibility equations.展开更多
In this paper, we establish a Liouville-type theorem for a system of higher-order parabolic inequalities by using the method of test functions and an integral estimate. As an application, we observe the Fujita blow-up...In this paper, we establish a Liouville-type theorem for a system of higher-order parabolic inequalities by using the method of test functions and an integral estimate. As an application, we observe the Fujita blow-up phenomena for the corresponding parabolic system, which in particular fills up the gap in the recent result of Pang et. al. (Existence and nonexistence of global solutions for a higher-order semilinear parabolic system, Indiana Univ. Math. J., 55(2006), 1113-1134). Moreover, the importance of this observation is that we do not impose any regularity assumption on the initial data.展开更多
In this paper,we consider the following system of integral equations on upper half space {u(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α) λ1up1(y) + μ1vp2(y) + β1up3(y)vp4(y) dy;v(x) = ∫Rn + (1/|x-y...In this paper,we consider the following system of integral equations on upper half space {u(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α) λ1up1(y) + μ1vp2(y) + β1up3(y)vp4(y) dy;v(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α)(λ2uq1(y) + μ2vq2(y) + β2uq3(y)vq4(y) dy,where Rn + = {x =(x1,x2,...,xn) ∈ Rn|xn〉 0}, =(x1,x2,...,xn-1,-xn) is the reflection of the point x about the hyperplane xn= 0,0 〈 α 〈 n,λi,μi,βi≥ 0(i = 1,2) are constants,pi≥ 0 and qi≥ 0(i = 1,2,3,4).We prove the nonexistence of positive solutions to the above system with critical and subcritical exponents via moving sphere method.展开更多
In this paper, we derive an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems. We also use moving plane method to prove the related Liouvill...In this paper, we derive an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems. We also use moving plane method to prove the related Liouville type theorems for semilinear parabolic problems.展开更多
This paper deals with a coupled system of fourth-order parabolic inequalities |u|t ≥ -△2^u+|v|^q, |v|t ≥-△2v+|u|p^ in S=R^n ×R^+ withp, q 〉 1, n ≥1. AFujita- Liouville type theorem is establishe...This paper deals with a coupled system of fourth-order parabolic inequalities |u|t ≥ -△2^u+|v|^q, |v|t ≥-△2v+|u|p^ in S=R^n ×R^+ withp, q 〉 1, n ≥1. AFujita- Liouville type theorem is established that the inequality system does not admit nontrivial nonnegative global solutions on S whenever n/4≤ max( p+1/pq-1, q+1/pq-1 ). Since the general maximum-comparison principle does not hold for the fourth-order problem, the authors use the test function method to get the global non-existence of nontrivial solutions.展开更多
In this paper we prove some Liouville type results for the p-sub-Laplacian on the group of Heisenberg type. A strong maximum principle and a Hopf type principle concerning p-sub-Laplacian are established.
文摘This paper deals with the problem of the type triangle open_H f+ f^p =O inquaternionic Heisenberg group, where triangle open_H is the quaternionic Heisenberg Laplacian. Itis proved that, under suitable conditions on p and /, the only solution of triangle open_H f+ f^p=O.
基金Project supported by the Doctoral Scientific Research Startup Fund of Anhui University,China (Grant No. 33190059)the National Natural Science Foundation of China (Grant No. 10874174)+1 种基金the Research Fund for the Doctoral Program of Higher Education of China (New Teacher) (Grant No. 20113401120004)the Open Funds from the National Laboratory for Infrared Physics,Chinese Academy of Sciences (Grant No. 201117)
文摘In terms of the coherent state evolution in phase space,we present a quantum mechanical version of the classical Liouville theorem.The evolution of the coherent state from |z〉to|sz-rz*〉 corresponds to the motion from a point z(q,p) to another point sz-rz* with |s|2-|r|2=1.The evolution is governed by the so-called Fresnel operator U(s,r) that was recently proposed in quantum optics theory,which classically corresponds to the matrix optics law and the optical Fresnel transformation,and obeys group product rules.In other words,we can recapitulate the Liouville theorem in the context of quantum mechanics by virtue of coherent state evolution in phase space,which seems to be a combination of quantum statistics and quantum optics.
基金supported by the National Science Foundation of China(41275063 and 11401575)
文摘In this article, we will derive local elliptic type gradient estimates for positive solutions of linear parabolic equations (△-e/et)u(x,t)+q(x,t)u^p(x,t)=0 and nonlinear parabolic equations (△-e/et)u(x,t)+h(x,t)u^p(x,t)=0(p 〉 1) on Riemannian manifolds.As applications, we obtain some theorems of Liouville type for positive ancient solutions of such equations. Our results generalize that of Souplet-Zhang ([1], Bull. London Math. Soc. 38(2006), 1045-1053) and the author ([2], Nonlinear Anal. 74 (2011), 5141-5146).
文摘In this article, we study the nonexistence of solution with finite Morse index for the following Choquaxd type equation -△u=∫Rn|u(y)|p/|x-y|αdy|u(x)|p-2u(x) in RN,where N≥3,0〈α〈min {4,N}.Suppose that 2 〈 p 〈2N-α/N-2,we will show that this problem does not possess nontrivial solution with finite Morse index. While for p =2N-α/N-2,if i(u) 〈∞, then we have ∫RN∫RN|u(x)|p|u(y)|p dxdy 〈∞ and ∫RN|△u|2 dx=|∫RN∫RN|u(x)|p/|x-y|a dxdy.
基金Yanyan Li’s research was partially supported by NSF Grants DMS-1501004,DMS-2000261,and Simons Fellows Award 677077Han Lu’s research was partially supported by NSF Grants DMS-1501004,DMS-2000261Siyuan Lu’s research was partially supported by NSERC Discovery Grant.
文摘In this paper, we classify Mobius invariant differential operators of second orderin two-dimensional Euclidean space, and establish a Liouville type theorem forgeneral Mobius invariant elliptic equations. The equationsare naturally associ-ated with a continuous family of convex cones Γ_(p) in R^(2), with parameter p∈[1,2],joining the half plane Γ_(1) := {(λ_(1),λ_(2)) : λ_(1)+λ_(2)> 0} and the first quadrant Γ_(2) := {(λ_(1),λ_(2)) : λ_(1),λ_(2)> 0}. Chen and C. M. Li established in 1991 a Liouvilletype theorem corresponding to Γ_(1) under an integrability assumption on the solution. The uniqueness result does not hold without this assumption. The Liouville typetheorem we establish in this paper for Γ_(p),1 < p ≤ 2, does not require any additionalassumption on the solution as for Γ_(1). This is reminiscent of the I iouville type theo-rems in dimensions n≥3 established by Caffarelli, Gidas and Spruck in 1989 andby A.B. Li and Y. Y. Li in 2003-2005, where no additional assumption was neededeither. On the other hand, there is a striking new phenomena in dimension n=2 that Γ_(p) ,for p=1 is a sharp dividing line for such uniqueness result to hold without anyfurther assumption on the solution. In dimensions n≥3, there is no such dividing line.
基金supported by National Natural Science Foundation of China (Grant No. 11571268)Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2014JM1021)
文摘We investigate the Liouville theorem for an integral system with Poisson kernel on the upper half space R+n,{u(x) =2/(nωn)∫?R+n(xnf(v(y)))/(|x- y|n)dy, x ∈R+n,v(y) =2/(nωn)∫R+n(xng(u(x)))/(|x- y|n)dx, y ∈?R+n,where n 3, ωn is the volume of the unit ball in Rn. This integral system arises from the Euler-Lagrange equation corresponding to an integral inequality on the upper half space established by Hang et al.(2008).With natural structure conditions on f and g, we classify the positive solutions of the above system based on the method of moving spheres in integral form and the inequality mentioned above.
基金supported by National Natural Science Foundation of China (Grant No.10631020)Doctoral Program Foundation of the Ministry of Education of China (Grant No. 20090002110019)
文摘In this paper,we study the Kato's inequality on locally finite graphs.We also study the application of Kato's inequality to Ginzburg-Landau equations on such graphs.Interesting properties of elliptic and parabolic equations on the graphs and a Liouville type theorem are also derived.
基金Acknowledgements This work was supported in part by the National Natural Science Foundation of China (Grant No. 11171266).
文摘We investigate the nonnegative solutions of the system involving the fractional Laplacian:{(-△)^αui(x)=fi(u),x∈R^n,i=1,2,…,m, u(x)=(u1(x),u2(x),……,um(x)),where 0 〈 α 〈 1, n 〉 2, fi(u), 1 4 ≤ 4 ≤m, are real-valued nonnegative functions of homogeneous degree Pi ≥0 and nondecreasing with respect to the independent variables ul, u2,..., urn. By the method of moving planes, we show that under the above conditions, all the positive solutions are radially symmetric and monotone decreasing about some point x0 if Pi = (n + 2α)/(n- 2α) for each 1 ≤ i ≤ m; and the only nonnegative solution of this system is u ≡ 0 if 1〈pi〈(n+2α)/(n-2α) for all 1≤i≤m.
文摘In this paper,we investigate subelliptic harmonic maps with a potential from noncompact complete sub-Riemannian manifolds corresponding to totally geodesic Riemannian foliations.Under some suitable conditions,we give the gradient estimates of these maps and establish a Liouville type result.
基金supported by the National Natural Science Foundation of China(No.11971153)Nanjing University of Aeronautics and Astronautics Research and Practice Innovation Program(No.xcxjh20220802)。
文摘In this paper,the authors study the gradient estimates for positive weak solutions to the following p-Laplacian equation△_(p)u+au^(σ)=0 on complete noncompact Riemannian manifold,where a,σare two nonzero real constants with p≠2.Using the gradient estimate,they can get the corresponding Lionville theorem.On the other hand,by virtue of the Poincare inequality,they also obtain a Liouville theorem under some integral conditions with respect to positive weak solutions.
文摘We prove the uniform Hölder bounds of solutions to a singularly perturbed elliptic system arising in competing models in population dynamics. In this system, two species compete to some extent throughout the whole domain but compete strongly on a subdomain. The proof relies upon the blow up technique and the monotonicity formula by Alt, Caffarelli and Friedman.
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10474076 and 10375041
文摘One of the basic problems about the inverse scattering transform for solving a completely integrable nonlinear evolutions equation is to demonstrate that the Jost solutions obtained from the inverse scattering equations of Cauchy integral satisfy the Lax equations. Such a basic problem still exists in the procedure of deriving the dark soliton solutions of the NLS equation in normal dispersion with non-vanishing boundary conditions through the inverse scattering transform. In this paper, a pair of Jost solutions with same analytic properties are composed to be a 2 × 2 matrix and then another pair are introduced to be its right inverse confirmed by the Liouville theorem. As they are both 2 × 2 matrices, the right inverse should be the left inverse too, based upon which it is not difficult to show that these Jost solutions satisfy both the first and second Lax equations. As a result of compatibility condition, the dark soliton solutions definitely satisfy the NLS equation in normal dispersion with non-vanishing boundary conditions.
基金Supported by the National Natural Science Foundation of China (11171254, 11271209)
文摘Let M be an n-dimensional complete noncompact Riemannian manifold with sectional curvature bounded from below, dμ = e^h(x) dV(x) the weighted measure and △μ,p the weighted p-Laplacian. In this paper we consider the non-linear elliptic equation △μ,pu=-λμ,p|u|^p-2ufor p ∈ (1, 2). We derive a sharp gradient estimate for positive smooth solutions of this equation. As applications, we get a Harnack inequality and a Liouville type theorem..
基金The project supported by National Natural Science Foundation of China under Grant Nos. 10534030 and 10375041
文摘Since the Jost solutions of the DNLS equation does not tend to the free Jost solutioins as |λ|→∞, the usual inverse scattering transform (IST) must be revised. Beside the Kaup and Newell's approach, we propose a simple revision in constructing the equations of IST, where the usual Zakharov-Shabat kern is revised by multiplying λ^-2 or λ^-1. To justify the revision we show that the Jost solutions obtained do satisfy the pair of compatibility equations.
基金Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No.09ZB081)the Key Scientific Research Foundation of Xihua University (Grant No.Z0912611)+1 种基金Sichuan Youth Science & Technology Foundation (Grant No.2011JQ0003)the Fundamental Research Funds for the Central Universities
文摘In this paper, we establish a Liouville-type theorem for a system of higher-order parabolic inequalities by using the method of test functions and an integral estimate. As an application, we observe the Fujita blow-up phenomena for the corresponding parabolic system, which in particular fills up the gap in the recent result of Pang et. al. (Existence and nonexistence of global solutions for a higher-order semilinear parabolic system, Indiana Univ. Math. J., 55(2006), 1113-1134). Moreover, the importance of this observation is that we do not impose any regularity assumption on the initial data.
基金Supported by National Natural Science Foundation of China(Grant Nos.11101319,11201081,11202035)the Foundation of Shaanxi Statistical Research Center(Grant No.13JD04)the Foundation of Xi’an University of Finance and Economics(Grant No.12XCK07)
文摘In this paper,we consider the following system of integral equations on upper half space {u(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α) λ1up1(y) + μ1vp2(y) + β1up3(y)vp4(y) dy;v(x) = ∫Rn + (1/|x-y|n-α-1/|-y|n-α)(λ2uq1(y) + μ2vq2(y) + β2uq3(y)vq4(y) dy,where Rn + = {x =(x1,x2,...,xn) ∈ Rn|xn〉 0}, =(x1,x2,...,xn-1,-xn) is the reflection of the point x about the hyperplane xn= 0,0 〈 α 〈 n,λi,μi,βi≥ 0(i = 1,2) are constants,pi≥ 0 and qi≥ 0(i = 1,2,3,4).We prove the nonexistence of positive solutions to the above system with critical and subcritical exponents via moving sphere method.
文摘In this paper, we derive an upper bound estimate of the blow-up rate for positive solutions of indefinite parabolic equations from Liouville type theorems. We also use moving plane method to prove the related Liouville type theorems for semilinear parabolic problems.
基金supported by the National Natural Science Foundation of China (Nos. 10771024,11171048)the Fundamental Research Funds for the Central Universities (No. 851011)
文摘This paper deals with a coupled system of fourth-order parabolic inequalities |u|t ≥ -△2^u+|v|^q, |v|t ≥-△2v+|u|p^ in S=R^n ×R^+ withp, q 〉 1, n ≥1. AFujita- Liouville type theorem is established that the inequality system does not admit nontrivial nonnegative global solutions on S whenever n/4≤ max( p+1/pq-1, q+1/pq-1 ). Since the general maximum-comparison principle does not hold for the fourth-order problem, the authors use the test function method to get the global non-existence of nontrivial solutions.
文摘In this paper we prove some Liouville type results for the p-sub-Laplacian on the group of Heisenberg type. A strong maximum principle and a Hopf type principle concerning p-sub-Laplacian are established.