期刊文献+
共找到279篇文章
< 1 2 14 >
每页显示 20 50 100
Forkhead box protein O1(FoxO1)regulates lipids metabolism and cell proliferation mediated by insulin and PI3K-Akt-mTOR pathway in goose primary hepatocytes
1
作者 RONGXUE WEI CHUNCHUN HAN +7 位作者 FENGJIANG YE SHOUHAI WEI FANG HE HEHE LIU LIANG LI HONGYONG XU SHENQIANG HU XIANYIN ZENG 《BIOCELL》 SCIE 2022年第1期171-183,共13页
In order to explore the role of forkhead box protein O1(FoxO1)in the lipid metabolism and cell proliferation,goose primary hepatocytes were isolated and incubated with insulin or PI3K-Akt-mTOR pathway dual inhibitor N... In order to explore the role of forkhead box protein O1(FoxO1)in the lipid metabolism and cell proliferation,goose primary hepatocytes were isolated and incubated with insulin or PI3K-Akt-mTOR pathway dual inhibitor NVPBEZ235,and then transfected with FoxO1 interference plasmid.The related parameters of lipid metabolism and cell proliferation were measured.The results firstly showed that FoxO1 interference increased the intracellular TG and lipids concentration(P<0.05);and increased the proliferative index(PI),cell DNA synthesis,protein expression of Cyclin D1 in goose primary hepatocytes(P<0.05).Secondly,the co-treatment of insulin and FoxO1 interference increased the mRNA level and protein content of Cyclin D1(P<0.05);however,there was no significant difference between the insulin treatment and the co-treatment of insulin and miR-FoxO1 interference in the intracellular TG and lipids concentration and PI(P>0.05).Lastly,the decrease of intracellular TG and lipids concentration and PI induced by NVP-BEZ235 was up-regulated by FoxO1 interference significantly(P<0.05).In summary,FoxO1 could regulate the lipids metabolism and cell proliferation mediated by PI3K-Akt-mTOR signaling pathway in goose primary hepatocytes.Further investigations are required to highlight the potential role of FoxO1 in the lipid metabolism and cell proliferation mediated by insulin in goose primary hepatocyte. 展开更多
关键词 FOXO1 Lipid metabolism Cell proliferation PI3K-Akt-mTOR signal pathway Goose primary hepatocytes
下载PDF
Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism 被引量:3
2
作者 Jie Li Wen Jiang +9 位作者 Yuefang Cai Zhenqiu Ning Yingying Zhou Chengyi Wang Sookja Ki Chung Yan Huang Jingbo Sun Minzhen Deng Lihua Zhou Xiao Cheng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期650-656,共7页
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However... Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction. 展开更多
关键词 astrocytic endothelin-1 dentate gyrus differentially expressed proteins HIPPOCAMPUS ischemic stroke learning and memory deficits lipid metabolism neural stem cells NEUROGENESIS proliferation
下载PDF
Lipid metabolism analysis in esophageal cancer and associated drug discovery 被引量:1
3
作者 Ruidi Jiao Wei Jiang +3 位作者 Kunpeng Xu Qian Luo Luhua Wang Chao Zhao 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第1期1-15,共15页
Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in ... Esophageal cancer is an upper gastrointestinal malignancy with a bleak prognosis.It is still being explored in depth due to its complex molecular mechanisms of occurrence and development.Lipids play a crucial role in cells by participating in energy supply,biofilm formation,and signal transduction processes,and lipid metabolic reprogramming also constitutes a significant characteristic of malignant tumors.More and more studies have found esophageal cancer has obvious lipid metabolism abnormalities throughout its beginning,progress,and treatment resistance.The inhibition of tumor growth and the enhancement of antitumor therapy efficacy can be achieved through the regulation of lipid metabolism.Therefore,we reviewed and analyzed the research results and latest findings for lipid metabolism and associated analysis techniques in esophageal cancer,and comprehensively proved the value of lipid metabolic reprogramming in the evolution and treatment resistance of esophageal cancer,as well as its significance in exploring potential therapeutic targets and biomarkers. 展开更多
关键词 Lipid metabolism Esophageal cancer PROGRESSION Treatment resistance New therapeutic targets
下载PDF
Effects of Poria cocos polysaccharide on growth performance,physiological parameters,and lipid metabolism of spotted sea bass Lateolabrax maculatus
4
作者 Jing LU Zhangfan HUANG +2 位作者 Youling YE Anle XU Zhongbao LI 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期316-331,共16页
The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes du... The aquaculture industry has developed significantly over the past few decades and has had a substantial impact on the global food supply and marine fisheries resources.However,some problems arise behind the scenes due to excessive intensive farming,such as slow animal growth,frequent disease,and lipid metabolism disorders.These problems have limited the sustainable development of the aquaculture industry,and a continuable solution is required.The use of fungal polysaccharide appears to provide a solution to these problems.Therefore,different supplemented levels of Poria cocos polysaccharide(PCP)(0,0.4,0.8,1.2,1.6,and 2.0 g/kg,respectively)were fed to spotted sea bass(Lateolabrax maculatus)in similar size(30.28±0.18 g)in current study.The effects of PCP on growth,physiological parameters,and lipid metabolism of spotted sea bass were investigated after a 4-week rearing period.Results showed,fish with PCP intake presented a significantly higher weight gain,specific growth rate,and a significantly lower feed conversion ratio.Significantly higher trypsin activity in liver and intestine were observed in fish with PCP intake.The superoxide dismutase activity in serum and liver of fish with PCP intake were significantly improved,while significantly higher serum total antioxidant capacity and hepatic catalase activity were also observed.However,no significant differences in lysozyme and alkaline phosphatase activity were evident among groups.Fish with PCP intake showed a significantly lower total cholesterol,but no noteworthy change in triglyceride and lipid-metabolismrelated genes expression were observed among groups.Results indicated that intake of PCP has a positive effect on growth and antioxidant capacity of spotted sea bass,but seems to have a limited effect on the non-specific immunity and lipid metabolism of spotted sea bass.Based on the regression analysis results,1.4 g/kg of PCP is the optimal dose for spotted sea bass in size(30.28±0.18 g). 展开更多
关键词 spotted sea bass Poria cocos POLYSACCHARIDE GROWTH lipid metabolism
下载PDF
RARRES2's impact on lipid metabolism in triplenegative breast cancer:a pathway to brain metastasis
5
作者 Quazi T.H.Shubhra 《Military Medical Research》 SCIE CAS CSCD 2024年第2期311-312,共2页
Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical... Breast cancer brain metastasis(BCBrM)is a crucial and hard area of research which guarantees an urgent need to understand the underlying molecular mechanisms.A recent study by Li et al.[1]published in Military Medical Research investigated the role of retinoic acid receptor responder 2(RARRES2)in regulating lipid metabolism in BCBrM,highlighting the clinical relevance of alterations in lipid metabolites,such as phosphatidylcholine(PC)and triacylglycerols(TAGs),by RARRES2 through the modulation of phosphatase and tensin homologue(PTEN)-mammalian target of rapamycin(mTOR)-sterol regulatory element-binding protein 1(SREBP1)signaling pathway.This commentary aims to elaborate on the key findings and their relevance to the field. 展开更多
关键词 Retinoic acid receptor responder 2(RARRES2) Lipid metabolism Cancer PTEN-mTOR-SREBP1 signaling Metabolic reprogramming Brain metastasis
下载PDF
Plant-based meat analogues aggravated lipid accumulation by regulating lipid metabolism homeostasis in mice
6
作者 Yunting Xie Linlin Cai +4 位作者 Zhiji Huang Kai Shan Xinglian Xu Guanghong Zhou Chunbao Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期946-960,共15页
To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-bas... To determine the effects of plant-based meat analogues on the metabolic health and the possible mechanisms,mice were fed with a real pork diet(AP),a real beef diet(AB),a plant-based pork analogue diet(PP)and plant-based beef analogue diet(PB)for 68 days.Compared with real meat,the plant-based meat analogues increased food and energy intake,body weight,white fat and liver weight and caused adipocyte hypertrophy,hepatic lipid droplet accumulation,and inflammatory responses in mice.Metabolomics revealed that plantbased meat analogues altered the composition of serum metabolites,which regulated lipid metabolism homeostasis.The PB diet upregulated gene expression related to lipid synthesis,lipolysis and adipocyte differentiation while the PP diet upregulated expression of lipolysis-related genes but downregulated expression of adipocyte differentiation-related genes in white adipose tissue.Meanwhile,both PP and PB diets upregulated lipid influx-and synthesis-related genes but downregulated lipid oxidation-related genes in liver.The specific metabolite biomarkers may affect fat accumulation mainly by direct lipid metabolism pathways or indirect amino acid metabolism,protein digestion and absorption,bile secretion,aminoacyl-tRNA biosynthesis,neuroactive ligand-receptor interaction and ABC transporters pathways.These findings provide a new insight into understanding the differences in nutritional functions of meat and plant-based meat analogues. 展开更多
关键词 Meat analogues Metabolomics Lipid metabolism Adipose tissue dysfunction Ectopic fat deposition
下载PDF
Secreted Frizzled-Related Protein 5 Mediates Wnt5a Expression in Microcystin-Leucine-Arginine-Induced Liver Lipid Metabolism Disorder in Mice
7
作者 Meiyan Yang Furong Yu +3 位作者 Qianqian Ji Huiying Zhang Jiaxiang Zhang Daojun Chen 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期850-864,共15页
Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,memb... Objective Microcystin-leucine-arginine(MC-LR)exposure induces lipid metabolism disorders in the liver.Secreted frizzled-related protein 5(SFRP5)is a natural antagonist of winglesstype MMTV integration site family,member 5A(Wnt5a)and an anti-inflammatory adipocytokine.In this study,we aimed to investigate whether MC-LR can induce lipid metabolism disorders in hepatocytes and whether SFRP5,which has anti-inflammatory effects,can alleviate the effects of hepatic lipid metabolism by inhibiting the Wnt5a/Jun N-terminal kinase(JNK)pathway.Methods We exposed mice to MC-LR in vivo to induce liver lipid metabolism disorders.Subsequently,mouse hepatocytes that overexpressed SFRP5 or did not express SFRP5 were exposed to MC-LR,and the effects of SFRP5 overexpression on inflammation and Wnt5a/JNK activation by MC-LR were observed.Results MC-LR exposure induced liver lipid metabolism disorders in mice and significantly decreased SFRP5 mRNA and protein levels in a concentration-dependent manner.SFRP5 overexpression in AML12cells suppressed MC-LR-induced inflammation.Overexpression of SFRP5 also inhibited Wnt5a and phosphorylation of JNK.Conclusion MC-LR can induce lipid metabolism disorders in mice,and SFRP5 can attenuate lipid metabolism disorders in the mouse liver by inhibiting Wnt5a/JNK signaling. 展开更多
关键词 Jun N-terminal kinase Secreted frizzled-related protein 5 WNT5A Hepatic lipid metabolism disorder
下载PDF
Lipid metabolism-related long noncoding RNA RP11-817I4.1 promotes fatty acid synthesis and tumor progression in hepatocellular carcinoma
8
作者 Ren-Yong Wang Jia-Ling Yang +5 位作者 Ning Xu Jia Xu Shao-Hua Yang Dao-Ming Liang Jin-Ze Li Hong Zhu 《World Journal of Gastroenterology》 SCIE CAS 2024年第8期919-942,共24页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an H... BACKGROUND Hepatocellular carcinoma(HCC)is one of the most common types of tumors.The influence of lipid metabolism disruption on the development of HCC has been demonstrated in published studies.AIM To establish an HCC prognostic model for lipid metabolism-related long non-coding RNAs(LMR-lncRNAs)and conduct in-depth research on the specific role of novel LMR-lncRNAs in HCC.METHODS Correlation and differential expression analyses of The Cancer Genome Atlas data were used to identify differentially expressed LMR-lncRNAs.Quantitative real-time polymerase chain reaction analysis was used to evaluate the expression of LMR-lncRNAs.Nile red staining was employed to observe intracellular lipid levels.The interaction between RP11-817I4.1,miR-3120-3p,and ATP citrate lyase(ACLY)was validated through the performance of dual-luciferase reporter gene and RIP assays.RESULTS Three LMR-lncRNAs(negative regulator of antiviral response,RNA transmembrane and coiled-coil domain family 1 antisense RNA 1,and RP11-817I4.1)were identified as predictive markers for HCC patients and were utilized in the construction of risk models.Additionally,proliferation,migration,and invasion were reduced by RP11-817I4.1 knockdown.An increase in lipid levels in HCC cells was significantly induced by RP11-817I4.1 through the miR-3120-3p/ACLY axis.CONCLUSION LMR-lncRNAs have the capacity to predict the clinical characteristics and prognoses of HCC patients,and the discovery of a novel LMR-lncRNAs,RP11-817I4.1,revealed its role in promoting lipid accumulation,thereby accelerating the onset and progression of HCC. 展开更多
关键词 Hepatocellular carcinoma Lipid metabolism Immune microenvironment Prognostic markers Metabolic reprogramming
下载PDF
Limosilactobacillus mucosae FZJTZ26M3 prevents NAFLD in mice through modulation of lipid metabolism and gut microbiota dysbiosis
9
作者 Danting Dang Bowen Li +5 位作者 Mengfan Ding RPaul Ross Catherine Stanton Jianxin Zhao Bo Yang Wei Chen 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1589-1601,共13页
Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old ma... Lactobacillus are considered promising therapeutic methods for nonalcoholic fatty liver disease(NAFLD).The effects of two strains of Ltmosilactobacillus mucosae on NAFLD were investigated in this study.Fourweek-old male C57BL/6J mice were divided into 4 groups(n=8 per group,Control,Model,FZJTZ26M3,FGSYC17L3).L.mucosae FZJTZ26M3 reduced the mice 's body weight,liver weight,and adipose tissue weight after 12 weeks of therapy.According to serum analysis,total cholesterol,triacylglycerol,and low-density lipoprotein cholesterol significantly decreased after L.mucosae FZJTZ26M3 intervention.Liver pathology showed that L.mucosae FZJTZ26M3 was effective to ameliorate lipid deposition in NAFLD mice.Additionally,the expression of the gene related to lipid metabolism in the liver and adipose tissue was analyzed,and the results indicated that L.mucosae FZJTZ26M3 could alleviate NAFLD by regulating lipid metabolism.Furthermore,the results of 16S rRNA gene sequencing revealed a drop in the relative abundance of Ruminococcaceae,which is linked to inflammation,but the relative abundance of a potential probiotic Akkermansia significantly increased after L.mucosae FZJTZ26M3 intervention.Generally,L.mucosae FZJTZ26M3 could be a candidate to prevent NAFLD. 展开更多
关键词 Limosilactobacillus mucosae Nonalcoholic fatty liver disease(NAFLD) Probiotic Lipid metabolism Gut microbiota
下载PDF
Global research trends and prospects of cellular metabolism in colorectal cancer
10
作者 Yan-Chen Liu Zhi-Cheng Gong +3 位作者 Chao-Qun Li Peng Teng Yan-Yan Chen Zhao-Hui Huang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第2期527-542,共16页
BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometr... BACKGROUND An increasing number of studies have focused on the role of cellular metabolism in the development of colorectal cancer(CRC).However,no work is currently available to synthesize the field through bibliometrics.AIM To analyze the development in the field of“glucose metabolism”(GM),“amino acid metabolism”(AM),“lipid metabolism”(LM),and“nucleotide metabolism”(NM)in CRC by visualization.METHODS Articles within the abovementioned areas of GM,AM,LM and NM in CRC,which were published from January 1,1991,to December 31,2022,are retrieved from the Web of Science Core Collection and analyzed by CiteSpace 6.2.R4 and VOSviewer 1.6.19.RESULTS The field of LM in CRC presented the largest number of annual publications and the fastest increase in the last decade compared with the other three fields.Meanwhile,China and the United States were two of the most prominent contri-butors in these four areas.In addition,Gang Wang,Wei Jia,Maria Notar-nicola,and Cornelia Ulrich ranked first in publication numbers,while Jing-Yuan Fang,Senji Hirasawa,Wei Jia,and Charles Fuchs were the most cited authors on average in these four fields,respectively.“Gut microbiota”and“epithelial-mesenchymal transition”emerged as the newest burst words in GM,“gut microbiota”was the latest outburst word in AM,“metastasis”,“tumor microenvironment”,“fatty acid metabolism”,and“metabolic reprogramming”were the up-to-date outbreaking words in LM,while“epithelial-mesenchymal transition”and“apoptosis”were the most recently occurring words in NM.CONCLUSION Research in“cellular metabolism in CRC”is all the rage at the moment,and researchers are particularly interested in exploring the mechanism to explain the metabolic alterations in CRC.Targeting metabolic vulnerability appears to be a promising direction in CRC therapy. 展开更多
关键词 Cellular metabolism Colorectal cancer Glucose metabolism Amino acid metabolism Lipid metabolism Nucleotide metabolism
下载PDF
Ferroptosis regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer
11
作者 Lan-Mei Wang Wei-Wei Zhang +1 位作者 Ying-Yang Qiu Fang Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2781-2792,共12页
BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attentio... BACKGROUND Gastric cancer is one of the most common malignant tumors in the world,and its occurrence and development involve complex biological processes.Iron death,as a new cell death mode,has attracted wide attention in recent years.However,the regulatory mechanism of iron death in gastric cancer and its effect on lipid peroxidation metabolism remain unclear.AIM To explore the role of iron death in the development of gastric cancer,reveal its relationship with lipid peroxidation,and provide a new theoretical basis for revealing the molecular mechanism of the occurrence and development of gastric cancer.METHODS The process of iron death in gastric cancer cells was simulated by cell culture model,and the occurrence of iron death was detected by fluorescence microscopy and flow cytometry.The changes of gene expression related to iron death and lipid peroxidation metabolism were analyzed by high-throughput sequencing technology.In addition,a mouse model of gastric cancer was established,and the role of iron death in vivo was studied by histology and immunohistochemistry,and the level of lipid peroxidation was detected.These methods comprehensively and deeply reveal the regulatory mechanism of iron death on lipid peroxidation metabolism in the occurrence and development of gastric cancer.RESULTS Iron death was significantly activated in gastric cancer cells,and at the same time,associated lipid peroxidation levels increased significantly.Through high-throughput sequencing analysis,it was found that iron death regulated the expression of several genes related to lipid metabolism.In vivo experiments demonstrated that increased iron death in gastric cancer mice was accompanied by a significant increase in lipid peroxidation.CONCLUSION This study confirmed the important role of iron death in regulating lipid peroxidation metabolism in the occurrence and development of gastric cancer.The activation of iron death significantly increased lipid peroxidation levels,revealing its regulatory mechanism inside the cell. 展开更多
关键词 Ferroptosis Lipid peroxidation Gastric cancer Lipid metabolism Systematic review
下载PDF
Research progress of ferroptosis regulating lipid peroxidation and metabolism in occurrence and development of primary liver cancer
12
作者 Yu-Jie Shu Bo Lao Ying-Yang Qiu 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第6期2335-2349,共15页
As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities ... As a highly aggressive tumor,the pathophysiological mechanism of primary liver cancer has attracted much attention.In recent years,factors such as ferroptosis regulation,lipid peroxidation and metabolic abnormalities have emerged in the study of liver cancer,providing a new perspective for understanding the development of liver cancer.Ferroptosis regulation,lipid peroxidation and metabolic abnormalities play important roles in the occurrence and development of liver cancer.The regulation of ferroptosis is involved in apoptosis and necrosis,affecting cell survival and death.Lipid peroxidation promotes oxidative damage and promotes the invasion of liver cancer cells.Metabolic abnormalities,especially the disorders of glucose and lipid metabolism,directly affect the proliferation and growth of liver cancer cells.Studies of ferroptosis regulation and lipid peroxidation may help to discover new therapeutic targets and improve therapeutic outcomes.The understanding of metabolic abnormalities can provide new ideas for the prevention of liver cancer,and reduce the risk of disease by adjusting the metabolic process.This review focuses on the key roles of ferroptosis regulation,lipid peroxidation and metabolic abnormalities in this process. 展开更多
关键词 Ferroptosis Lipid peroxidation Primary liver cancer Lipid metabolism REVIEW
下载PDF
Mechanistic study of lipid metabolism disorders in diabetic kidney disease treated with GLQMP based on network pharmacology,molecular docking and in vitro experiments
13
作者 Shu-Man Liu Zi-Jie Yan +1 位作者 Man Xiao Yi-Qiang Xie 《Traditional Medicine Research》 2024年第2期42-51,共10页
Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effec... Background:In this study,we used network pharmacology and molecular docking combined with vitro experiments to explore the potential mechanism of action of Gualou Qumai pill(GLQMP)against DKD.Methods:We screened effective compounds and drug targets using Chinese medicine systemic pharmacology database and analysis platform and Chinese medicine molecular mechanism bioinformatics analysis tools;and searched for DKD targets using human online Mendelian genetics and gene cards.The potential targets of GLQMP for DKD were obtained through the intersection of drug targets and disease targets.Cytoscape software was applied to build herbal medicine-active compound-target-disease networks and analyze them;protein-protein interaction networks were analyzed using the STRING database platform;gene ontology and Kyoto Encyclopedia of Genes and Genomes were used for gene ontology and gene and genome encyclopedia to enrich potential targets using the DAVID database;and the AutoDock Vina 1.1.2 software for molecular docking of key targets with corresponding key components.In vitro experiments were validated by CCK8,oil red O staining,TC,TG,RT-qPCR,and Western blot.Results:Through network pharmacology analysis,a total of 99 potential therapeutic targets of GLQMP for DKD and the corresponding 38 active compounds were obtained,and 5 core compounds were identified.By constructing the protein-protein interaction network and performing network topology analysis,we found that PPARA and PPARG were the key targets,and then we molecularly docked these two key targets with the 38 active compounds,especially the 5 core compounds,and found that PPARA and PPARG had good binding ability with a variety of compounds.In vitro experiments showed that GLQMP was able to ameliorate HK-2 cell injury under high glucose stress,improve cell viability,reduce TC and TG levels as well as decrease the accumulation of lipid droplets,and RT-qPCR and Western blot confirmed that GLQMP was able to promote the expression levels of PPARA and PPARG.Conclusion:Overall,this study revealed the active compounds,important targets and possible mechanisms of GLQMP treatment for DKD,and conducted preliminary verification experiments on its correctness,provided novel insights into the treatment of DKD by GLQMP. 展开更多
关键词 Gualou Qumai pill diabetic kidney disease disorder of lipid metabolism network pharmacology molecular docking
下载PDF
Supplemental Clostridium butyricum modulates lipid metabolism by reshaping the gut microbiota composition and bile acid profile in IUGR suckling piglets 被引量:3
14
作者 Xin Zhang Yang Yun +7 位作者 Zheng Lai Shuli Ji Ge Yu Zechen Xie Hao Zhang Xiang Zhong Tian Wang Lili Zhang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第3期1150-1166,共17页
Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,... Background Intrauterine growth restriction(IUGR)can cause lipid disorders in infants and have long-term adverse effects on their growth and development.Clostridium butyricum(C.butyricum),a kind of emerging probiotics,has been reported to effectively attenuate lipid metabolism dysfunctions.Therefore,the objective of this study was to investigate the effects of C.butyricum supplementation on hepatic lipid disorders in IUGR suckling piglets.Methods Sixteen IUGR and eight normal birth weight(NBW)neonatal male piglets were used in this study.From d 3to d 24,in addition to drinking milk,the eight NBW piglets(NBW-CON group,n=8)and eight IUGR piglets(IUGR-CON group,n=8)were given 10 mL sterile saline once a day,while the remaining IUGR piglets(IUGR-CB group,n=8)were orally administered C.butyricum at a dose of 2×108colony-forming units(CFU)/kg body weight(suspended in 10 mL sterile saline)at the same frequency.Results The IUGR-CON piglets exhibited restricted growth,impaired hepatic morphology,disordered lipid metabolism,increased abundance of opportunistic pathogens and altered ileum and liver bile acid(BA)profiles.However,C.butyricum supplementation reshaped the gut microbiota of the IUGR-CB piglets,characterized by a decreased abundance of opportunistic pathogens in the ileum,including Streptococcus and Enterococcus.The decrease in these bile salt hydrolase(BSH)-producing microbes increased the content of conjugated BAs,which could be transported to the liver and function as signaling molecules to activate liver X receptorα(LXRα)and farnesoid X receptor(FXR).This activation effectively accelerated the synthesis and oxidation of fatty acids and down-regulated the total cholesterol level by decreasing the synthesis and promoting the efflux of cholesterol.As a result,the growth performance and morphological structure of the liver improved in the IUGR piglets.Conclusion These results indicate that C.butyricum supplementation in IUGR suckling piglets could decrease the abundance of BSH-producing microbes(Streptococcus and Enterococcus).This decrease altered the ileum and liver BA profiles and consequently activated the expression of hepatic LXRαand FXR.The activation of these two signaling molecules could effectively normalize the lipid metabolism and improve the growth performance of IUGR suckling piglets. 展开更多
关键词 Bile acid Clostridium butyricum Gut microbiota Intrauterine growth restriction Lipid metabolism Suckling piglet
下载PDF
Characteristics of glucose and lipid metabolism and the interaction between gut microbiota and colonic mucosal immunity in pigs during cold exposure 被引量:2
15
作者 Teng Teng Guodong Sun +4 位作者 Hongwei Ding Xin Song Guangdong Bai Baoming Shi Tingting Shang 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第5期2158-2179,共22页
Background Cold regions have long autumn and winter seasons and low ambient temperatures.When pigs are unable to adjust to the cold,oxidative damage and inflammation may develop.However,the differences between cold an... Background Cold regions have long autumn and winter seasons and low ambient temperatures.When pigs are unable to adjust to the cold,oxidative damage and inflammation may develop.However,the differences between cold and non-cold adaptation regarding glucose and lipid metabolism,gut microbiota and colonic mucosal immunological features in pigs are unknown.This study revealed the glucose and lipid metabolic responses and the dual role of gut microbiota in pigs during cold and non-cold adaptation.Moreover,the regulatory effects of dietary glucose supplements on glucose and lipid metabolism and the colonic mucosal barrier were evaluated in cold-exposed pigs.Results Cold and non-cold-adapted models were established by Min and Yorkshire pigs.Our results exhibited that cold exposure induced glucose overconsumption in non-cold-adapted pig models(Yorkshire pigs),decreasing plasma glucose concentrations.In this case,cold exposure enhanced the ATGL and CPT-1αexpression to promote liver lipolysis and fatty acid oxidation.Meanwhile,the two probiotics(Collinsella and Bifidobacterium)depletion and the enrichment of two pathogens(Sutterella and Escherichia-Shigella)in colonic microbiota are not conducive to colonic mucosal immunity.However,glucagon-mediated hepatic glycogenolysis in cold-adapted pig models(Min pigs)maintained the stability of glucose homeostasis during cold exposure.It contributed to the gut microbiota(including the enrichment of the Rikenellaceae RC9 gut group,[Eubacterium]coprostanoligenes group and WCHB1-41)that favored cold-adapted metabolism.Conclusions The results of both models indicate that the gut microbiota during cold adaptation contributes to the protection of the colonic mucosa.During non-cold adaptation,cold-induced glucose overconsumption promotes thermogenesis through lipolysis,but interferes with the gut microbiome and colonic mucosal immunity.Furthermore,glucagon-mediated hepatic glycogenolysis contributes to glucose homeostasis during cold exposure. 展开更多
关键词 Cold exposure Colonic mucosal immunity Fatty acid oxidation Glucose and lipid metabolism Gut microbiota Pig model
下载PDF
Role of intestinal probiotics in the modulation of lipid metabolism:implications for therapeutic treatments 被引量:2
16
作者 Xiaoran Song Yanan Liu +3 位作者 Xin Zhang Peifang Weng Ruilin Zhang Zufang Wu 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1439-1449,共11页
Currently, accumulating pieces of evidence indicate that probiotics, living in the gastrointestinal tract, play an important role in regulating host metabolism. As a tool, probiotics have great potential for treating ... Currently, accumulating pieces of evidence indicate that probiotics, living in the gastrointestinal tract, play an important role in regulating host metabolism. As a tool, probiotics have great potential for treating lipid metabolism diseases. However, the relationship between probiotics and abnormal lipid metabolism is still unclear, and the mechanism of action has been become a focus of microbiome research. Therefore, taking intestinal probiotics as the starting point, this article combs the relationship between probiotics and lipid metabolism. Moreover, we discuss the underlying mechanisms of intestinal probiotics regulating lipid metabolism and summarize the therapeutic strategies for abnormal lipids metabolism. This article provides a reference for the further utilization of probiotics in the field of functional foods(food industry). Meanwhile, it will benefit the clinical diagnosis and treatment of lipid metabolism diseases. 展开更多
关键词 PROBIOTICS Lipid metabolism Intestinal flora
下载PDF
Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy 被引量:1
17
作者 Xiao-Chen Feng Fu-Chen Liu +2 位作者 Wu-Yu Chen Jin Du Hui Liu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第4期617-631,共15页
Hepatocellular carcinoma(HCC)is a common malignant tumor that affecting many people's lives globally.The common risk factors for HCC include being overweight and obese.The liver is the center of lipid metabolism,s... Hepatocellular carcinoma(HCC)is a common malignant tumor that affecting many people's lives globally.The common risk factors for HCC include being overweight and obese.The liver is the center of lipid metabolism,synthesizing most cholesterol and fatty acids.Abnormal lipid metabolism is a significant feature of metabolic reprogramming in HCC and affects the prognosis of HCC patients by regulating inflammatory responses and changing the immune microenvironment.Targeted therapy and immunotherapy are being explored as the primary treatment strategies for HCC patients with unresectable tumors.Here,we detail the specific changes of lipid metabolism in HCC and its impact on both these therapies for HCC.HCC treatment strategies aimed at targeting lipid metabolism and how to integrate them with targeted therapy or immunotherapy rationally are also presented. 展开更多
关键词 Hepatocellular carcinoma Lipid metabolism Targeted therapy IMMUNOTHERAPY Drug resistance Therapeutic efficacy
下载PDF
Effects of vitamin D supplementation on glucose and lipid metabolism in patients with type 2 diabetes mellitus and risk factors for insulin resistance 被引量:1
18
作者 Li-Jie Sun Ji-Xuan Lu +2 位作者 Xin-Yu Li Tian-Sheng Zheng Xiao-Rong Zhan 《World Journal of Diabetes》 SCIE 2023年第10期1514-1523,共10页
BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the rela... BACKGROUND Type 2 diabetes mellitus(T2DM)is a chronic metabolic disease featured by insulin resistance(IR)and decreased insulin secretion.Currently,vitamin D deficiency is found in most patients with T2DM,but the relationship between vitamin D and IR in T2DM patients requires further investigation.AIM To explore the risk factors of IR and the effects of vitamin D supplementation on glucose and lipid metabolism in patients with T2DM.METHODS Clinical data of 162 T2DM patients treated in First Affiliated Hospital of Harbin Medical University between January 2019 and February 2022 were retrospectively analyzed.Based on the diagnostic criteria of IR,the patients were divided into a resistance group(n=100)and a non-resistance group(n=62).Subsequently,patients in the resistance group were subdivided to a conventional group(n=44)or a joint group(n=56)according to the treatment regimens.Logistic regression was carried out to analyze the risk factors of IR in T2DM patients.The changes in glucose and lipid metabolism indexes in T2DM patients with vitamin D deficiency were evaluated after the treatment.RESULTS Notable differences were observed in age and body mass index(BMI)between the resistance group and the non-resistance group(both P<0.05).The resistance group exhibited a lower 25-hydroxyvitamin D_(3)(25(OH)D_(3))level,as well as notably higher levels of 2-h postprandial blood glucose(2hPG),fasting blood glucose(FBG),and glycosylated hemoglobin(HbA1c)than the non-resistance group(all P<0.0001).Additionally,the resistance group demonstrated a higher triglyceride(TG)level but a lower high-density lipoprotein-cholesterol(HDL-C)level than the non-resistance group(all P<0.0001).The BMI,TG,HDL-C,25(OH)D_(3),2hPG,and HbA1c were found to be risk factors of IR.Moreover,the posttreatment changes in levels of 25(OH)D_(3),2hPG,FBG and HbA1c,as well as TG,total cholesterol,and HDL-C in the joint group were more significant than those in the conventional group(all P<0.05).CONCLUSION Patients with IR exhibit significant abnormalities in glucose and lipid metabolism parameters compared to the noninsulin resistant group.Logistic regression analysis revealed that 25(OH)D_(3)is an independent risk factor influencing IR.Supplementation of vitamin D has been shown to improve glucose and lipid metabolism in patients with IR and T2DM. 展开更多
关键词 Vitamin D Type 2 diabetes mellitus Glucose and lipid metabolism Insulin resistance Risk factors
下载PDF
Rumen microbial-driven metabolite from grazing lambs potentially regulates body fatty acid metabolism by lipid-related genes in liver
19
作者 Zhen Li Xingang Zhao +2 位作者 Luyang Jian Bing Wang Hailing Luo 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第4期1678-1695,共18页
Background Lipid metabolism differs significantly between grazing and stall-feeding lambs,affecting the quality of livestock products.As two critical organs of lipid metabolism,the differences between feeding patterns... Background Lipid metabolism differs significantly between grazing and stall-feeding lambs,affecting the quality of livestock products.As two critical organs of lipid metabolism,the differences between feeding patterns on rumen and liver metabolism remain unclear.In this study,16S rRNA,metagenomics,transcriptomics,and untargeted metabolomics were utilized to investigate the key rumen microorganisms and metabolites,as well as liver genes and metabolites associated with fatty acid metabolism under indoor feeding(F)and grazing(G).Results Compared with grazing,indoor feeding increased ruminal propionate content.Using metagenome sequencing in combination with 16S rRNA amplicon sequencing,the results showed that the abundance of propionate-producing Succiniclasticum and hydrogenating bacteria Tenericutes was enriched in the F group.For rumen metabolism,grazing caused up-regulation of EPA,DHA and oleic acid and down-regulation of decanoic acid,as well as,screening for 2-ketobutyric acid as a vital differential metabolite,which was enriched in the propionate metabolism pathway.In the liver,indoor feeding increased 3-hydroxypropanoate and citric acid content,causing changes in propionate metabolism and citrate cycle,while decreasing the ETA content.Then,the liver transcriptome revealed that 11 lipid-related genes were differentially expressed in the two feeding patterns.Correlation analysis showed that the expression of CYP4A6,FADS1,FADS2,ALDH6A1 and CYP2C23 was significantly associated with the propionate metabolism process,suggesting that propionate metabolism may be an important factor mediating the hepatic lipid metabolism.Besides,the unsaturated fatty acids in muscle,rumen and liver also had a close correlation.Conclusions Overall,our data demonstrated that rumen microbial-driven metabolite from grazing lambs potentially regulates multiple hepatic lipid-related genes,ultimately affecting body fatty acid metabolism. 展开更多
关键词 Feeding pattern LAMB Lipid metabolism LIVER MICROORGANISM RUMEN
下载PDF
Lipid metabolism and m^(6)A RNA methylation are altered in lambs supplemented rumen-protected methionine and lysine in a low-protein diet
20
作者 Kefyalew Gebeyew Chao Yang +7 位作者 Hui Mi Yan Cheng Tianxi Zhang Fan Hu Qiongxian Yan Zhixiong He Shaoxun Tang Zhiliang Tan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2023年第1期244-260,共17页
Background:Methionine or lysine has been reported to influence DNA methylation and fat metabolism,but their combined effects in N6-methyl-adenosine(m^(6)A)RNA methylation remain unclarified.The combined effects of rum... Background:Methionine or lysine has been reported to influence DNA methylation and fat metabolism,but their combined effects in N6-methyl-adenosine(m^(6)A)RNA methylation remain unclarified.The combined effects of rumen-protected methionine and lysine(RML)in a low-protein(LP)diet on lipid metabolism,m^(6)A RNA methylation,and fatty acid(FA)profiles in the liver and muscle of lambs were investigated.Sixty-three male lambs were divided into three treatment groups,three pens per group and seven lambs per pen.The lambs were fed a 14.5%crude protein(CP)diet(adequate protein[NP]),12.5%CP diet(LP),and a LP diet plus RML(LP+RML)for 60 d.Results:The results showed that the addition of RML in a LP diet tended to lower the concentrations of plasma leptin(P=0.07),triglyceride(P=0.05),and non-esterified FA(P=0.08).Feeding a LP diet increased the enzyme activity or m RNA expression of lipogenic enzymes and decreased lipolytic enzymes compared with the NP diet.This effect was reversed by supplementation of RML with a LP diet.The inclusion of RML in a LP diet affected the polyunsaturated fatty acids(PUFA),n-3 PUFA,and n-6 PUFA in the liver but not in the muscle,which might be linked with altered expression of FA desaturase-1(FADS1)and acetyl-Co A carboxylase(ACC).A LP diet supplemented with RML increased(P<0.05)total m^(6)A levels in the liver and muscle and were accompanied by decreased expression of fat mass and obesity-associated protein(FTO)and alk B homologue 5(ALKBH5).The m RNA expressions of methyltransferase-like 3(METTL3)and methyltransferase-like 14(METTL14)in the LP+RML diet group were lower than those in the other two groups.Supplementation of RML with a LP diet affected only liver YTH domain family(YTHDF2)proteins(P<0.05)and muscle YTHDF3(P=0.09),which can be explained by limited m^(6)Abinding proteins that were mediated in m RNA fate.Conclusions:Our findings showed that the inclusion of RML in a LP diet could alter fat deposition through modulations of lipogenesis and lipolysis in the liver and muscle.These changes in fat metabolism may be associated with the modification of m^(6)A RNA methylation. 展开更多
关键词 LAMBS Lipid metabolism Low-protein LYSINE METHIONINE m^(6)A RNA methylation
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部