There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA...There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation system based on self-organizing map (SOM) and designed for arbitrarily distributed sensor array is proposed. The essential principle of this method is that the map from distance difference of arrival (DDOA) to DOA is Lipschitz continuity, it indicates the similar topology between them, and thus Kohonen SOM is a suitable network to classify DOA through DDOA. The simulation results show that the DOA estimation errors are less than 1° for most signals between 0° to 180°. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Further, the network can be trained in advance, which makes it possible to be implemented in real-time.展开更多
One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, ...One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".展开更多
In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coeffi...In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.展开更多
We give characterizations for Bergman-Orlicz spaces with standard weights via a Lipschitz type condition in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As an application, we obtain the boundeness of the ...We give characterizations for Bergman-Orlicz spaces with standard weights via a Lipschitz type condition in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As an application, we obtain the boundeness of the symmetric lifting operator from Bergman-Orlicz spaces on the unit disk into Bergman-Orlicz spaces on the bidisk.展开更多
The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and ...The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.展开更多
We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is...We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion.展开更多
In the present paper we state some approximation theorems concerning point- wise convergence and its rate for a class of non-convolution type nonlinear integral opera- tors of the form:Tλ(f;x)=B∫AKλ(t,x,f(t)...In the present paper we state some approximation theorems concerning point- wise convergence and its rate for a class of non-convolution type nonlinear integral opera- tors of the form:Tλ(f;x)=B∫AKλ(t,x,f(t))dr,x∈〈a,b〉λλA.In particular, we obtain the pointwise convergence and its rate at some characteristic points x0 off as (x,λ) → (x0, λ0) in LI 〈A,B 〉, where 〈 a,b 〉 and 〈A,B 〉 are is an arbitrary intervals in R, A is a non-empty set of indices with a topology and X0 an accumulation point of A in this topology. The results of the present paper generalize several ones obtained previously in the papers [191-[23]展开更多
In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the righthand function f(y) satisfy one-side Lipschitz condition < f(y) - f(z),y - z >less than or equal to v(1)parallel to y...In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the righthand function f(y) satisfy one-side Lipschitz condition < f(y) - f(z),y - z >less than or equal to v(1)parallel to y - z parallel to(2),f : Omega subset of or equal to C-m --> C-m, or another related one-side Lipschitz condition [F(Y) - F(Z), Y - Z](D) less than or equal to v'parallel to Y - Z parallel to(D)(2), F : Omega(s) subset of or equal to C-ms --> C-ms, this paper demonstrates that the difference of the two sets of all functions satisfying the above two conditions respectively is at most that v' - v' only is constant independent of stiffness of function f.展开更多
Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to e...Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.展开更多
In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coef...In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.展开更多
It is shown that there is an unique ω-period solution x(t, φ^*) for a delayed cellular network and its each solution x(t, φ) converges exponentially to x(t, φ^*) if its each output function is bounded and ...It is shown that there is an unique ω-period solution x(t, φ^*) for a delayed cellular network and its each solution x(t, φ) converges exponentially to x(t, φ^*) if its each output function is bounded and satisfies Lipschitz condition when all input signals are at-periodic functions.展开更多
We prove a general existence and uniqueness result of solutions for a backward stochastic differential equation(BSDE)with a stochastic Lipschitz condition.We also establish a continuous dependence property and a compa...We prove a general existence and uniqueness result of solutions for a backward stochastic differential equation(BSDE)with a stochastic Lipschitz condition.We also establish a continuous dependence property and a comparison theorem for solutions to this type of BSDEs,thus strengthening existing results.展开更多
In this paper the existence and uniqueness of the smallest g-supersolution for BSDE is discussed in the case without Lipschitz condition imposing on both constraint function and drift coefficient in the different meth...In this paper the existence and uniqueness of the smallest g-supersolution for BSDE is discussed in the case without Lipschitz condition imposing on both constraint function and drift coefficient in the different method from the one with Lipschitz condition.Then by considering (ξ,g) as a parameter of BSDE,and ( ξ α,g α) as a class of parameters for BSDE,where α belongs to a set A,for every α ∈A there exists a pair of solution { Y α,Z α } for the BSDE,the properties of sup α ∈A{ Y α } which is also a solution for some BSDE is studied.This result may be used to discuss optimal problems with recursive utility.展开更多
The concepts of Lipschitz regularity and Hoelder one are reviewed. They arenot equivalent except for a < 1. A modification for Definition 1 on Lipschitz regularity in Ref.,which is not rigorous, is offered. Two pro...The concepts of Lipschitz regularity and Hoelder one are reviewed. They arenot equivalent except for a < 1. A modification for Definition 1 on Lipschitz regularity in Ref.,which is not rigorous, is offered. Two propositions on Hoelder regularity are given and proven.展开更多
This paper addresses the practical stabilization problem for a class of one-sided Lipschitz nonlinear time delay systems with external disturbances.In case there is no perturbation,the exponential convergence of the o...This paper addresses the practical stabilization problem for a class of one-sided Lipschitz nonlinear time delay systems with external disturbances.In case there is no perturbation,the exponential convergence of the observer was confirmed.When external disturbances appear in the system,a separation principle is established,and the authors show that the closed loop system is exponentially practical stable.By choosing a suitable Lyapunov-Krasovskii functional,the authors derive new sufficient conditions to guarantee the exponential stability of the systems.Finally,a physical model is performed to prove the efficiency and applicability of the suggested approach.展开更多
Some results on convergence of Newton's method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L average.
The random Dirichlet type functions on the unit ball of Cn are studied. Sufficient conditions of the multipliers of Dμ for 0 < μ≤1, if n = 1 or 0 < μ < 2 if n > 1 are given. The smoothness of random Di...The random Dirichlet type functions on the unit ball of Cn are studied. Sufficient conditions of the multipliers of Dμ for 0 < μ≤1, if n = 1 or 0 < μ < 2 if n > 1 are given. The smoothness of random Dirichlet type functions is discussed.展开更多
This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appea...This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.展开更多
In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimens...In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.展开更多
In this paper,we investigate the mean-square convergence of the split-step q-scheme for nonlinear stochastic differential equations with jumps.Under some standard assumptions,we rigorously prove that the strong rate o...In this paper,we investigate the mean-square convergence of the split-step q-scheme for nonlinear stochastic differential equations with jumps.Under some standard assumptions,we rigorously prove that the strong rate of convergence of the splitstep q-scheme in strong sense is one half.Some numerical experiments are carried out to assert our theoretical result.展开更多
文摘There are many DOA estimation methods based on different signal features, and these methods are often evaluated by experimental results, but lack the necessary theoretical basis. Therefore, a direction of arrival (DOA) estimation system based on self-organizing map (SOM) and designed for arbitrarily distributed sensor array is proposed. The essential principle of this method is that the map from distance difference of arrival (DDOA) to DOA is Lipschitz continuity, it indicates the similar topology between them, and thus Kohonen SOM is a suitable network to classify DOA through DDOA. The simulation results show that the DOA estimation errors are less than 1° for most signals between 0° to 180°. Compared to MUSIC, Root-MUSIC, ESPRIT, and RBF, the errors of signals under signal-to-noise ratios (SNR) declines from 20 dB to 2 dB are robust, SOM is better than RBF and almost close to MUSIC. Further, the network can be trained in advance, which makes it possible to be implemented in real-time.
基金National Natural Science Foundation of China ( No. 11171062 ) Natural Science Foundation for the Youth,China ( No.11101077) Innovation Program of Shanghai Municipal Education Commission,China ( No. 12ZZ063)
文摘One existence integral condition was obtained for the adapted solution of the general backward stochastic differential equations(BSDEs). Then by solving the integral constraint condition, and using a limit procedure, a new approach method is proposed and the existence of the solution was proved for the BSDEs if the diffusion coefficients satisfy the locally Lipschitz condition. In the special case the solution was a Brownian bridge. The uniqueness is also considered in the meaning of "F0-integrable equivalent class" . The new approach method would give us an efficient way to control the main object instead of the "noise".
文摘In this paper we study the following nonlinear BSDE:y(t) + ∫1 t f(s,y(s),z(s))ds + ∫1 t [z(s) + g 1 (s,y(s)) + εg 2 (s,y(s),z(s))]dW s=ξ,t ∈ [0,1],where ε is a small parameter.The coefficient f is locally Lipschitz in y and z,the coefficient g 1 is locally Lipschitz in y,and the coefficient g 2 is uniformly Lipschitz in y and z.Let L N be the locally Lipschitz constant of the coefficients on the ball B(0,N) of R d × R d×r.We prove the existence and uniqueness of the solution when L N ~ √ log N and the parameter ε is small.
基金supported by Hainan Province Natural Science Foundation of China(2018CXTD338)the National Natural Science Foundation of China(11761026 and 11761027)Guangxi Natural Science Foundation(2020GXNSFAA159085).
文摘We give characterizations for Bergman-Orlicz spaces with standard weights via a Lipschitz type condition in the Euclidean, hyperbolic, and pseudo-hyperbolic metrics. As an application, we obtain the boundeness of the symmetric lifting operator from Bergman-Orlicz spaces on the unit disk into Bergman-Orlicz spaces on the bidisk.
基金Project supported by the National Natural Science Foundation of China (No. 10271025)the Program for New Century Excellent Talents in University of China
文摘The convergence criterion of Newton’s method to find the zeros of a map f from a Lie group to its corresponding Lie algebra is established under the assumption that f satisfies the classical Lipschitz condition, and that the radius of convergence ball is also obtained. Furthermore, the radii of the uniqueness balls of the zeros of f are estimated. Owren and Welfert (2000) stated that if the initial point is close sufficiently to a zero of f, then Newton’s method on Lie group converges to the zero; while this paper provides a Kantorovich’s criterion for the convergence of Newton’s method, not requiring the existence of a zero as a priori.
基金supported by National Natural Science Foundation under Grant Nos.10872014 and 10702023
文摘We investigate synchronization in an array network of nearest-neighbor coupled chaotic oscillators. By using of the Lyapunov stability theory and matrix theory, a criterion for stability of complete synchronization is deduced. Meanwhile, an estimate of the critical coupling strength is obtained to ensure achieving chaos synchronization. As an example application, a model of coupled Chua's circuits with linearly bidirectional coupling is studied to verify the validity of the criterion.
文摘In the present paper we state some approximation theorems concerning point- wise convergence and its rate for a class of non-convolution type nonlinear integral opera- tors of the form:Tλ(f;x)=B∫AKλ(t,x,f(t))dr,x∈〈a,b〉λλA.In particular, we obtain the pointwise convergence and its rate at some characteristic points x0 off as (x,λ) → (x0, λ0) in LI 〈A,B 〉, where 〈 a,b 〉 and 〈A,B 〉 are is an arbitrary intervals in R, A is a non-empty set of indices with a topology and X0 an accumulation point of A in this topology. The results of the present paper generalize several ones obtained previously in the papers [191-[23]
文摘In the theoretical study of numerical solution of stiff ODEs, it usually assumes that the righthand function f(y) satisfy one-side Lipschitz condition < f(y) - f(z),y - z >less than or equal to v(1)parallel to y - z parallel to(2),f : Omega subset of or equal to C-m --> C-m, or another related one-side Lipschitz condition [F(Y) - F(Z), Y - Z](D) less than or equal to v'parallel to Y - Z parallel to(D)(2), F : Omega(s) subset of or equal to C-ms --> C-ms, this paper demonstrates that the difference of the two sets of all functions satisfying the above two conditions respectively is at most that v' - v' only is constant independent of stiffness of function f.
文摘Inspired by inertial methods and extragradient algorithms,two algorithms were proposed to investigate fixed point problem of quasinonexpansive mapping and pseudomonotone equilibrium problem in this study.In order to enhance the speed of the convergence and reduce computational cost,the algorithms used a new step size and a cutting hyperplane.The first algorithm was proved to be weak convergence,while the second algorithm used a modified version of Halpern iteration to obtain strong convergence.Finally,numerical experiments on several specific problems and comparisons with other algorithms verified the superiority of the proposed algorithms.
基金supported by the National Natural Science Foundation of China(Nos.11671113,12071101).
文摘In this paper,we consider the stochastic differential equations with piecewise continuous arguments(SDEPCAs)in which the drift coefficient satisfies the generalized one-sided Lipschitz condition and the diffusion coefficient satisfies the linear growth condition.Since the delay term t-[t]of SDEPCAs is not continuous and differentiable,the variable substitution method is not suitable.To overcome this dificulty,we adopt new techniques to prove the boundedness of the exact solution and the numerical solution.It is proved that the truncated Euler-Maruyama method is strongly convergent to SDEPCAs in the sense of L'(q≥2).We obtain the convergence order with some additional conditions.An example is presented to illustrate the analytical theory.
基金the Important Research Fund for the National committee of China (No.20040816012)
文摘It is shown that there is an unique ω-period solution x(t, φ^*) for a delayed cellular network and its each solution x(t, φ) converges exponentially to x(t, φ^*) if its each output function is bounded and satisfies Lipschitz condition when all input signals are at-periodic functions.
基金funded by the Graduate Innovation Program of China University of Mining and Technology(Grant No.2023WLKXJ121)the Postgraduate Research&Practice Innovation Program of Jiangsu Province.Shengjun Fan is supported by the National Natural Science Foundation of China(Grant No.12171471).
文摘We prove a general existence and uniqueness result of solutions for a backward stochastic differential equation(BSDE)with a stochastic Lipschitz condition.We also establish a continuous dependence property and a comparison theorem for solutions to this type of BSDEs,thus strengthening existing results.
文摘In this paper the existence and uniqueness of the smallest g-supersolution for BSDE is discussed in the case without Lipschitz condition imposing on both constraint function and drift coefficient in the different method from the one with Lipschitz condition.Then by considering (ξ,g) as a parameter of BSDE,and ( ξ α,g α) as a class of parameters for BSDE,where α belongs to a set A,for every α ∈A there exists a pair of solution { Y α,Z α } for the BSDE,the properties of sup α ∈A{ Y α } which is also a solution for some BSDE is studied.This result may be used to discuss optimal problems with recursive utility.
文摘The concepts of Lipschitz regularity and Hoelder one are reviewed. They arenot equivalent except for a < 1. A modification for Definition 1 on Lipschitz regularity in Ref.,which is not rigorous, is offered. Two propositions on Hoelder regularity are given and proven.
文摘This paper addresses the practical stabilization problem for a class of one-sided Lipschitz nonlinear time delay systems with external disturbances.In case there is no perturbation,the exponential convergence of the observer was confirmed.When external disturbances appear in the system,a separation principle is established,and the authors show that the closed loop system is exponentially practical stable.By choosing a suitable Lyapunov-Krasovskii functional,the authors derive new sufficient conditions to guarantee the exponential stability of the systems.Finally,a physical model is performed to prove the efficiency and applicability of the suggested approach.
文摘Some results on convergence of Newton's method in Banach spaces are established under the assumption that the derivative of the operators satisfies the radius or center Lipschitz condition with a weak L average.
文摘The random Dirichlet type functions on the unit ball of Cn are studied. Sufficient conditions of the multipliers of Dμ for 0 < μ≤1, if n = 1 or 0 < μ < 2 if n > 1 are given. The smoothness of random Dirichlet type functions is discussed.
文摘This paper deals with the simultaneous estimation of states and unknown inputs for a class of Lipschitz nonlinear systems using only the measured outputs. The system is assumed to have bounded uncertainties that appear on both the state and output matrices. The observer design problem is formulated as a set of linear constraints which can be easily solved using linear matrix inequalities (LMI) technique. An application based on manipulator arm actuated by a direct current (DC) motor is presented to evaluate the performance of the proposed observer. The observer is applied to estimate both state and faults.
基金supported by the National Natural Science Foundation of China under Grant No.11688101
文摘In this paper, PID(proportional-integral-derivative) controllers will be designed to solve the tracking problem for a class of coupled multi-agent systems, where each agent is described by a second-order high-dimensional nonlinear uncertain dynamical system, which only has access to its own tracking error information and does not need to communicate with others. This paper will show that a 3-dimensional manifold can be constructed based on the information about the Lipschitz constants of the system nonlinear dynamics, such that whenever the three parameters of each PID controller are chosen from the manifold, the whole multi-agent system can be stabilized globally and the tracking error of each agent approaches to zero asymptotically. For a class of coupled first-order multi-agent nonlinear uncertain systems, a PI controller will be designed to stabilize the whole system.
基金supported by the National Natural Science Foundations of China under grant numbers Nos.11571206,91130003 and 11171189.
文摘In this paper,we investigate the mean-square convergence of the split-step q-scheme for nonlinear stochastic differential equations with jumps.Under some standard assumptions,we rigorously prove that the strong rate of convergence of the splitstep q-scheme in strong sense is one half.Some numerical experiments are carried out to assert our theoretical result.