Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is emp...Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.展开更多
Chromosome aberrations are distinctive features of human malignant tumors. Analysis of chromosomal changes can illuminate the molecular mechanisms underlying the development and progression of cancer. To establish the...Chromosome aberrations are distinctive features of human malignant tumors. Analysis of chromosomal changes can illuminate the molecular mechanisms underlying the development and progression of cancer. To establish the technique of multicolor fluorescence in situ hybridization (M-FISH) for identifying chromosome aberrations in esophageal carcinoma cell line KYSE 410-4, four pools of 6-color whole-chromosome painting probes have been designed and hybridized on the same metaphase spread by four rounds of repetitive FISH. Repetitive 6-color M-FISH was successfully established and the cytogenetic abnormalities in KYSE 410-4 cells were characterized. Chromosome gains occurred at 2q, 3, 8, 17p, and X. An isochromosome 3q was visualized in the cell line, which might be one intermediate mechanism leading to 3p losses and/or 3q gains. Furthermore, 16 structural arrangements were detected, including four derivative chromosomes. The rearrangement of the centromeric regions accounted for approximately 44% of all rearrangements. The results added a more complete and accurate information of the genetic alterations to the classical cytogenetic description of KYSE 410-4 and provided a detailed cytogenetic background data for appropriate use of the cell line. The established 6-color M-FISH was useful for analyzing chromosomes in the whole genome of human tumors.展开更多
A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogest...A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.展开更多
In order to improve 4-CP degradation efficiency, a novel gas-liquid hybrid discharge (liD) reactor was developed. Removal of 4-CP with spark-spark discharge (SSD) was higher than that with spark-corona discharge ...In order to improve 4-CP degradation efficiency, a novel gas-liquid hybrid discharge (liD) reactor was developed. Removal of 4-CP with spark-spark discharge (SSD) was higher than that with spark-corona discharge (SCD). Amount of H2O2 and O3 produced with SSD were larger than that with SCD. OH formation was increased by the combination of H2O2 and O3. The contribution of ·OH (38 % formed by O3 conversion) oxidation on removal of 4-CP accounted for nearly 60 %. The other effects of ultraviolet radiation, intense shock waves and pyrolysis, played partial roles in about 40 % of removal rate.展开更多
Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. Th...Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. The interlayer distance of the BMIMCl/LP layered hybrids expanded with an increasing concentration of BMIMCl, indicating that cumulative BMIMCl was intercalated into the LP layers. The efficiency of BMIMCl toward COcapture was significantly enhanced after it was immobilized within LP layers.展开更多
The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has f...The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.展开更多
Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated sto...Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.展开更多
A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed partic...A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.展开更多
Hydrocarbon-producing lacustrine basins are widely developed in the world, and China has a large number of lacustrine basins that have developed since the early Permian. The organic-rich shale-dominated heterogeneous ...Hydrocarbon-producing lacustrine basins are widely developed in the world, and China has a large number of lacustrine basins that have developed since the early Permian. The organic-rich shale-dominated heterogeneous source rock intervals in Chinese lacustrine basins generally contain frequent thin interbeds of stratigraphically associated sandstone, siltstone, marl, dolomite, and limestone. The concept of ‘‘Hybrid Plays' ' as put forth in this article recognizes this pattern of alternating organicrich shale and organic-lean interbeds and existence of mixed unconventional and conventional plays. Hybrid Plays in lacustrine source rock intervals present a unique closed petroleum system hosting continuous hydrocarbons.The interbedded organic-lean siliciclastic and/or carbonateplays are efficiently charged with hydrocarbons via short migration pathways from the adjacent organic-rich shale that is often also a self-sourced play. We assert ‘‘Hybrid Plays' ' provide the most realistic exploration model for targeting multiple-stacked and genetically related very tight shale, tight and conventional plays together in the entire source rock interval rather than individual plays only. The Hybrid Play model has been proven and works for a wide variety of lacustrine rift, sag and foreland basins in China.展开更多
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser...To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.展开更多
Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an...Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.展开更多
Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are propos...Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.展开更多
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis...Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.展开更多
We propose a novel all fiber Mach-Zehnder interferometer(MZI) based on photonic crystal fiber(PCF) filled with liquid crystal(LC). The interference between the core mode and the cladding modes of a PCF is utiliz...We propose a novel all fiber Mach-Zehnder interferometer(MZI) based on photonic crystal fiber(PCF) filled with liquid crystal(LC). The interference between the core mode and the cladding modes of a PCF is utilized.To excite the cladding modes, a region is formed using fiber fusion splicer. Due to the fact that varying effective index difference between the core region and the LC-filled cladding region can cause different transmission spectra,we mainly study the MZIs with different LC-filled structures and different lengths of LC filling. The measured results demonstrate that quite clear interference spectra can be obtained. Through analysis spatial frequency spectrum and temperature spectrum of two MZIs with different LC-filled structures, we can obtain that the MZI with adjacent two LC-filled holes has clearer interference spectrum and higher temperature sensitivity. Thus we choose this MZI to measure the temperature sensitivity with different lengths of LC filling. When the length of LC filling is 2 cm, the temperature sensitivities can be enlarged to 1.59 nm/C. The interferometer shows a good temperature tunability and sensitivity, which can be a good candidate for a highly tunable optical filtering and temperature sensing applications.展开更多
Metal matrix composites (MMCs) are gaining widespread recognition in numerous technological fields owing to its superior mechanical properties when compared with conventional metals/alloys. The aluminium based hybrid ...Metal matrix composites (MMCs) are gaining widespread recognition in numerous technological fields owing to its superior mechanical properties when compared with conventional metals/alloys. The aluminium based hybrid composites are increasingly being used in the transport, aerospace, marine, automobile and mineral processing industries, owing to the improved strength, stiffness and wear resistance properties. In the present research work, the composites were prepared using the liquid metallurgy technique, in which 2 - 10 weight percentage of Al2O3 particulates and 1 weight percentage of Graphite were dispersed in the base Al6061 alloy. The Casted hybrid composites were subjected to machining process to prepare the specimens according to ASTM standards. Then, the prepared specimens are subjected for assessing the Microstructure followed by its Mechanical behaviors such as, Hardness, Tensile strength, Compressive strength respectively. The microstructure analysis confirms that homogenous distribution of Al2O3 and Gr in the Al6061 matrix alloy and there was a momentous enhancement in decisive tensile strength, compressive strength and hardness properties of the hybrid composite. However, a substantial increase in the compressive strength was noticed in graphite reinforced composites as the graphite content was increased and there was a significant diminution in hardness coupled with monotonic increases in the ductility. Further, the ultimate tensile strength and compressive strength of the composite was noticed;thus the outcome of the study will provide explicit rationalizations for these observable facts. Therefore, the proposed way out in the study can provide ample of approaches to minimize the existing problem by employing this newer hybrid composites.展开更多
A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilic...A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.展开更多
A new approach to synthesize liquid crystalline polymer with narrow polydispersity index(PDI) was developed.Photopolymerization of 4-cyanophenyl-4'-(6-acryloyloxyhexyloxy)benzoate(RM23) in nematic liquid crysta...A new approach to synthesize liquid crystalline polymer with narrow polydispersity index(PDI) was developed.Photopolymerization of 4-cyanophenyl-4'-(6-acryloyloxyhexyloxy)benzoate(RM23) in nematic liquid crystals with macroscopic orientation was studied.The effects of the monomer concentration on the molecular weight and PDI of the resulting polymers were studied through gel permeation chromatography(GPC) and polarized optical microscopy.The low PDI of 1.19 and 1.22 was obtained in the reverse and normal modes,respectively.The PDI and molecular weight increased with monomer concentration.展开更多
基金National Natural Science Foundation of China under Grant Nos.51725901 and 51639006
文摘Tuned liquid damper (TLD) and tuned liquid column damper (TLCD) are two types of passive control devices that are widely used in structural control. In this study, a real-time hybrid simulation (RTHS) technique is employed to investigate the diff erence in control performance between TLD and TLCD. A series of RTHSs is presented with the premise of the same liquid length, mass ratio, and structural parameters. Herein, TLD and TLCD are physically experimented, and controlled structures are numerically simulated. Then, parametric studies are performed to further evaluate the diff erent performance between TLD and TLCD. Experimental results demonstrate that TLD is more eff ective than TLCD under diff erent amplitude excitations.
基金Acknowledgements This study was supported by the National Science Foundation (No. 30630067);the State Key Basic Research Grant of China (No. 2004CB518705); the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0416).
文摘Chromosome aberrations are distinctive features of human malignant tumors. Analysis of chromosomal changes can illuminate the molecular mechanisms underlying the development and progression of cancer. To establish the technique of multicolor fluorescence in situ hybridization (M-FISH) for identifying chromosome aberrations in esophageal carcinoma cell line KYSE 410-4, four pools of 6-color whole-chromosome painting probes have been designed and hybridized on the same metaphase spread by four rounds of repetitive FISH. Repetitive 6-color M-FISH was successfully established and the cytogenetic abnormalities in KYSE 410-4 cells were characterized. Chromosome gains occurred at 2q, 3, 8, 17p, and X. An isochromosome 3q was visualized in the cell line, which might be one intermediate mechanism leading to 3p losses and/or 3q gains. Furthermore, 16 structural arrangements were detected, including four derivative chromosomes. The rearrangement of the centromeric regions accounted for approximately 44% of all rearrangements. The results added a more complete and accurate information of the genetic alterations to the classical cytogenetic description of KYSE 410-4 and provided a detailed cytogenetic background data for appropriate use of the cell line. The established 6-color M-FISH was useful for analyzing chromosomes in the whole genome of human tumors.
基金Funded by Chongqing Medical University Scientific Research Foundation
文摘A set of novel structural descriptors (molecular hybridization electronegativity-distance vector, VMEDh) was put forward, and the quantitative structure–activity relationship (QSAR) of a series of 17α-Acetoxyprogesterones (APs) was investigated. Taking into account the effect of various hybridized orbits on atomic electronegativities, we developed the structure descriptors with amended electronegativities to build a QSAR model. The 10-parameter model based on VMEDh yields a correlation coefficient R=0.972 and standard deviation SD=0.262, which are more desirable than those of the previous molecular electonegativity-distance vector (MEDV-4) (R=0.969, SD=0.275). By stepwise multiple linear regression, several parameters are selected to construct optimal models. The 7-parameter model based on VMEDh has R=0.960 and SD=0.276; its correlation coefficient (RCV) and standard deviation (SDCV) for leave-one-out procedure crossvalidation are respectively RCV=0.890 and SDCV=0.445. The 6-parameter MEDV-4 model has R=0.946, SD=0.304, RCV=0.903 and SDCV=0.406. It is demonstrated that VMEDh has desirable estimation performance and good predictive capability for this series of chemical compounds.
基金This work is financial support from National Key Natural Science Foundation of China (No.20336030) Distinguished Youth Foundation of Zhejiang Province (RC 02060).
文摘In order to improve 4-CP degradation efficiency, a novel gas-liquid hybrid discharge (liD) reactor was developed. Removal of 4-CP with spark-spark discharge (SSD) was higher than that with spark-corona discharge (SCD). Amount of H2O2 and O3 produced with SSD were larger than that with SCD. OH formation was increased by the combination of H2O2 and O3. The contribution of ·OH (38 % formed by O3 conversion) oxidation on removal of 4-CP accounted for nearly 60 %. The other effects of ultraviolet radiation, intense shock waves and pyrolysis, played partial roles in about 40 % of removal rate.
基金sponsored by the National Science Foundation(CMMI-1562907)the financial support from the National Natural Science Foundation of China(51678511 and 51308484)+4 种基金the Open Fund of Key Laboratory of Mineralogy and Metallogeny in Chinese Academy of Sciences(KLMM20150104)the Natural Science Foundation of Hunan Province(13JJ4049)the Education Department Fund of Hunan Province(14C1094)the Major Talent Training Program of Xiangtan University(16PYZ09)the Specialized Research Fund for the Doctoral Program of Xiangtan University(12QDZ18)
文摘Hybrid adsorbents for COcapture were prepared by coassembling laponite(LP) nanosheets and 1-nbutyl-3-methylimidazolium chloride(BMIMCl). The prepared BMIMCl/LP layered hybrids were systematically characterized. The interlayer distance of the BMIMCl/LP layered hybrids expanded with an increasing concentration of BMIMCl, indicating that cumulative BMIMCl was intercalated into the LP layers. The efficiency of BMIMCl toward COcapture was significantly enhanced after it was immobilized within LP layers.
基金the National Natural Science Foundation of China (52002157,51873083)the Natural Science Foundation of Jiangsu Province(BK20190976)+1 种基金the University Natural Science Research Project of Jiangsu Province (19KJB430017)the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University)(sklpme2018-4-27)
文摘The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D03the National Natural Science Foundation of China under Grant Nos.51608016 and 51421005。
文摘Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.
基金The study was supported by the National Natural Science Foundation of China under contract No.10772041the State 0ceamic Administration Key Laboratory for Ploar Science of China under contract No.KP 2007004.
文摘A hybrid Lagrangian - Eulerian (HLE) method is developed for sea ice dynamics, which combines the high computational efficiency of finite difference method (FDM) with the high numerical accuracy of smoothed particle hydrodynamics (SPH). In this HLE model, the sea ice cover is represented by a group of Lagrangian ice particles with their own thicknesses and concentrations. These ice variables are interpolated to the Eularian gird nodes using the Gaussian interpolation function. The FDM is used to determine the ice velocities at Eulerian grid nodes, and the velocities of Lagrangian ice particles are interpolated from these grid velocities with the Gaussian function also. The thicknesses and concentrations of ice particles are determined based on their new locations. With the HLE numerical model, the ice ridging process in a rectangular basin is simulated, and the simulated results are validated with the analytical solution. This method is also applied to the simulation of sea ice dynamics in a vortex wind field. At last, this HLE model is applied to the Bohai Sea, and the simulated concentration, thickness and velocity match the satellite images and the field observed data well.
基金National Natural Science Foundation of China (Grant Numbers 40872077 and 41272122)China National Key Technology Research and Development Program (Grant Number 2001BA605A09-1)+1 种基金Sinopec’s Petroleum Exploration and Production Research Institute (Grant No. G5800-15-ZS-WX038)EGI’s China Shale Gas and Shale Oil Plays Consortia (100980) sponsored by 20 multi-national oil companies
文摘Hydrocarbon-producing lacustrine basins are widely developed in the world, and China has a large number of lacustrine basins that have developed since the early Permian. The organic-rich shale-dominated heterogeneous source rock intervals in Chinese lacustrine basins generally contain frequent thin interbeds of stratigraphically associated sandstone, siltstone, marl, dolomite, and limestone. The concept of ‘‘Hybrid Plays' ' as put forth in this article recognizes this pattern of alternating organicrich shale and organic-lean interbeds and existence of mixed unconventional and conventional plays. Hybrid Plays in lacustrine source rock intervals present a unique closed petroleum system hosting continuous hydrocarbons.The interbedded organic-lean siliciclastic and/or carbonateplays are efficiently charged with hydrocarbons via short migration pathways from the adjacent organic-rich shale that is often also a self-sourced play. We assert ‘‘Hybrid Plays' ' provide the most realistic exploration model for targeting multiple-stacked and genetically related very tight shale, tight and conventional plays together in the entire source rock interval rather than individual plays only. The Hybrid Play model has been proven and works for a wide variety of lacustrine rift, sag and foreland basins in China.
基金Projects(51471084,61475117)supported by the National Natural Science Foundation of ChinaProject(13ZCZDGX01109)supported by Tianjin Municipal Science and Technology Commission of ChinaProject(20122BBE500031)supported by the Key Technology Project of Jiangxi Province in China
文摘To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.
基金Supported by National Natural Science Foundation of China(Grant No.51275395)Major National Basic Research Program of China(973 Program,Grant Nos.2009CB724304-2,2009CB724404)
文摘Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB932400)the National Natural Science Foundation of China(Grant No.51772167)+1 种基金the China Postdoctoral Science Foundation(Grant No.2016M591169)the Shenzhen Municipal Basic Research Project,China(Grant No.JCYJ20170412171311288)
文摘Hybrid liquid/solid electrolytes(HLSEs) consisting of conventional organic liquid electrolyte(LE), polyacrylonitrile(PAN), and ceramic lithium ion conductor Li(1.5)Al(0.5)Ge(1.5)(PO4)3(LAGP) are proposed and investigated. The HLSE has a high ionic conductivity of over 2.25 × 10^(-3) S/cm at 25?C, and an extended electrochemical window of up to 4.8 V versus Li/Li+. The Li|HLSE|Li symmetric cells and Li|HLSE|Li FePO4 cells exhibit small interfacial area specific resistances(ASRs) comparable to that of LE while much smaller than that of ceramic LAGP electrolyte, and excellent performance at room temperature. Bis(trifluoromethane sulfonimide) salt in HLSE significantly affects the properties and electrochemical behaviors. Side reactions can be effectively suppressed by lowering the concentration of Li salt. It is a feasible strategy for pursuing the high energy density batteries with higher safety.
基金supported by the National Institute on Aging (NIA)National Institutes of Health (NIH)+3 种基金Nos.K99AG065645,R00AG065645R00AG065645-04S1 (to SK)NIH research grants,NINDS,No.R01 NS115834NINDS/NIA,No.R01 NS115834-02S1 (to LG)。
文摘Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia.
基金Supported by the National Natural Science Foundation of China under Grant Nos U1531102,61107059,61308052 and U1331114the 111 Project to the Harbin Engineering University under Grant No B13015the Fundamental Research Funds for the Central Universities
文摘We propose a novel all fiber Mach-Zehnder interferometer(MZI) based on photonic crystal fiber(PCF) filled with liquid crystal(LC). The interference between the core mode and the cladding modes of a PCF is utilized.To excite the cladding modes, a region is formed using fiber fusion splicer. Due to the fact that varying effective index difference between the core region and the LC-filled cladding region can cause different transmission spectra,we mainly study the MZIs with different LC-filled structures and different lengths of LC filling. The measured results demonstrate that quite clear interference spectra can be obtained. Through analysis spatial frequency spectrum and temperature spectrum of two MZIs with different LC-filled structures, we can obtain that the MZI with adjacent two LC-filled holes has clearer interference spectrum and higher temperature sensitivity. Thus we choose this MZI to measure the temperature sensitivity with different lengths of LC filling. When the length of LC filling is 2 cm, the temperature sensitivities can be enlarged to 1.59 nm/C. The interferometer shows a good temperature tunability and sensitivity, which can be a good candidate for a highly tunable optical filtering and temperature sensing applications.
文摘Metal matrix composites (MMCs) are gaining widespread recognition in numerous technological fields owing to its superior mechanical properties when compared with conventional metals/alloys. The aluminium based hybrid composites are increasingly being used in the transport, aerospace, marine, automobile and mineral processing industries, owing to the improved strength, stiffness and wear resistance properties. In the present research work, the composites were prepared using the liquid metallurgy technique, in which 2 - 10 weight percentage of Al2O3 particulates and 1 weight percentage of Graphite were dispersed in the base Al6061 alloy. The Casted hybrid composites were subjected to machining process to prepare the specimens according to ASTM standards. Then, the prepared specimens are subjected for assessing the Microstructure followed by its Mechanical behaviors such as, Hardness, Tensile strength, Compressive strength respectively. The microstructure analysis confirms that homogenous distribution of Al2O3 and Gr in the Al6061 matrix alloy and there was a momentous enhancement in decisive tensile strength, compressive strength and hardness properties of the hybrid composite. However, a substantial increase in the compressive strength was noticed in graphite reinforced composites as the graphite content was increased and there was a significant diminution in hardness coupled with monotonic increases in the ductility. Further, the ultimate tensile strength and compressive strength of the composite was noticed;thus the outcome of the study will provide explicit rationalizations for these observable facts. Therefore, the proposed way out in the study can provide ample of approaches to minimize the existing problem by employing this newer hybrid composites.
基金Supported by the National Natural Science Foundation of China(No. 50373037)the Special Funds for Major State BasicResearch Projects ( No. 2005CB623802) Specialized Research Fund for the Doctoral Program of Higher Education ( No.20040335077).
文摘A polystyrene(PS)/nanosilica organic-inorganic hybrid material was prepared from styrene monomer and commercial aqueous silica sol containing large amounts of Si-OH by means of emulsion polymerization. The nanosilica sol was modified by the addition of the reactive coupling agent methacrylexy propyltrimethoxysilane ( MPS), and the resulting latex particles were protected by surfactants such as sodium dodecyl sulphonate( SDS), hydroxypropyl methyl cellulose ( HMPC), and poly (vinylpyrrolidone) (PVP). The effects of the type of surfactant, the amount of surfactant, and the coupling agent on the shape and stability of the resulting latex particles were investigated. The TEM observation indicates that among SDS, HMPC, and PVP, SDS is the best surfactant. When the content of SDS is 0. 5% and the amount of MPS is 7% in the system, the latex with obvious core-shell structure could be obtained. The average diameters of the monodispersed particles range from 182 to 278 nm, and the average number of silica beads for each composite are 1325 and 4409, respectively. The FrIR analysis shows that PS was chemically linked to silica through MPS. The thermal gravimetric analysis shows that when there is a higher silica content, the hybrid composites have a better heat resistance.
基金The authors are grateful to NSF of China(No.50703013)Independent Innovative Position of Hubei Province for financial support of this work
文摘A new approach to synthesize liquid crystalline polymer with narrow polydispersity index(PDI) was developed.Photopolymerization of 4-cyanophenyl-4'-(6-acryloyloxyhexyloxy)benzoate(RM23) in nematic liquid crystals with macroscopic orientation was studied.The effects of the monomer concentration on the molecular weight and PDI of the resulting polymers were studied through gel permeation chromatography(GPC) and polarized optical microscopy.The low PDI of 1.19 and 1.22 was obtained in the reverse and normal modes,respectively.The PDI and molecular weight increased with monomer concentration.