期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Simultaneous measurement of velocity profile and liquid film thickness in horizontal gas–liquid slug flow by using ultrasonic Doppler method 被引量:1
1
作者 Lusheng Zhai Bo Xu +1 位作者 Haiyan Xia Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期323-340,共18页
Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterize... Horizontal gas-liquid two-phase flows widely exist in chemical engineering,oil/gas production and other important industrial processes.Slug flow pattern is the main form of horizontal gas-liquid flows and characterized by intermittent motion of film region and slug region.This work aims to develop the ultrasonic Doppler method to realize the simultaneous measurement of the velocity profile and liquid film thickness of slug flow.A single-frequency single-channel transducer is adopted in the design of the field-programmable gate array based ultrasonic Doppler system.A multiple echo repetition technology is used to improve the temporal-spatial resolution for the velocity profile.An experiment of horizontal gas-liquid two-phase flow is implemented in an acrylic pipe with an inner diameter of 20 mm.Considering the aerated characteristics of the liquid slug,slug flow is divided into low-aerated slug flow,high-aerated slug flow and pseudo slug flow.The temporal-spatial velocity distributions of the three kinds of slug flows are reconstructed by using the ultrasonic velocity profile measurement.The evolution characteristics of the average velocity profile in slug flows are investigated.A novel method is proposed to derive the liquid film thickness based on the instantaneous velocity profile.The liquid film thickness can be effectively measured by detecting the position and the size of the bubbles nearly below the elongated gas bubble.Compared with the time of flight method,the film thickness measured by the Doppler system shows a higher accuracy as a bubble layer occurs in the film region.The effect of the gas distribution on the film thickness is uncovered in three kinds of slug flows. 展开更多
关键词 Gas–liquid flow Complex fluids Measurement Ultrasonic Doppler Velocity profile liquid film thickness
下载PDF
Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids 被引量:1
2
作者 Weikai Ren Runsong Dai Ningde Jin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期179-194,共16页
The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thicknes... The hydrodynamic study of the liquid film around Taylor bubbles in slug flow has great significance for understanding parallel flow and interaction between Taylor bubbles.The prediction models for liquid film thickness mainly focus on stagnant flow,and some of them remain inaccurate performance.However,in the industrial process,the slug flow essentially is co-current flow.Therefore,in this paper,the liquid film thickness is studied by theoretical analysis and experimental methods under two conditions of stagnant and co-current flow.Firstly,under the condition of stagnant flow,the present work is based on Batchelor's theory,and modifies Batchelor's liquid film thickness model,which effectively improves its prediction accuracy.Under the condition of co-current flow,the prediction model of average liquid film thickness in slug flow is established by force and motion analysis.Taylor bubble length is introduced into the model as an important parameter.Dynamic experiments were carried out in the pipe with an inner diameter of 20 mm.The liquid film thickness,Taylor bubble velocity and length were measured by distributed ultrasonic sensor and intrusive cross-correlation conductivity sensor.Comparing the predicted value of the model with the measured results,the relative error is controlled within 10%. 展开更多
关键词 Slug flow Taylor bubble liquid film thickness Ultrasonic sensor Physical model
下载PDF
Characteristics of Gas-Liquid Slug Flow in Microchannel by Instantaneous Liquid Film Thickness Measurement 被引量:1
3
作者 SUN Yanhong CHEN Wenjie +1 位作者 LU Jinli WANG Changlong 《Journal of Thermal Science》 SCIE EI CAS CSCD 2022年第4期1194-1205,共12页
This paper seeks to decipher the exact relationship between the liquid film thickness and the hydrodynamics of gas-liquid slug flows. An instantaneous measurement system is developed by integrating the laser focus dis... This paper seeks to decipher the exact relationship between the liquid film thickness and the hydrodynamics of gas-liquid slug flows. An instantaneous measurement system is developed by integrating the laser focus displacement meter(LFDM) and high-speed camera to characterize the temporal evolution of the liquid film and the dynamic characteristics of continuous slug flows. A glass tube with internal diameter of 0.75 mm is used and the tested ranges of superficial gas and liquid velocities are 0.01–1.2 m/s and 0.01–0.09 m/s respectively. The non-zero signals of LFDM representing the bubble slug flows changed from regular periodic intervals to chaotic fluctuations when slug-annular flow pattern appears. The dominant frequencies of the periodic intermittent slug flows increased from about 0.5–2 Hz to nearly 10–20 Hz as the superficial gas velocity rised from 0.025 to 0.78 m/s. The bubble and liquid slug lengths calculated by the time interval of liquid film thickness and bubble velocity correlated well with the empirical model. Meantime, the average value of void fraction derived from the calculation of transient liquid film thickness shows a linear growth with the gas holdup ratio. 展开更多
关键词 liquid film thickness slug flow bubble/slug length void fraction
原文传递
Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles
4
作者 Xuejing He Zhenlin Li +1 位作者 Ji Wang Hai Yu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第8期16-25,共10页
The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o... The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer. 展开更多
关键词 Tube shapes Flow pattern liquid film thickness Heat transfer Two-phase flow
下载PDF
A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe
5
作者 Xiaochu Luo Xiaobing Qi +3 位作者 Zhao Luo Zhonghao Li Ruiquan Liao Xingkai Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第6期1233-1249,共17页
Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel... Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity.This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions.The measurement system comprises a cyclone,a conductivity probe,a probe reciprocating device,and a data acquisition and processing system.This method ensures that the flow pattern is adjusted to a forced annular flow,thereby minimizing the influence of complex and variable gas-liquid flow patterns on the measurement results;Moreover,it determines the liquid film thickness solely according to circuit connectivity rather than specific conductivity values,thereby mitigating the impact of salinity.The reliability of the measurement system is demonstrated through laboratory experiments.The experimental results indicate that,in a range of gas phase superficial velocities 5–20 m/s and liquid phase superficial velocities 0.079–0.48 m/s,the maximum measurement deviation for the void fraction is 4.23%. 展开更多
关键词 Forced annular flow dynamic conductivity probe void fraction gas-liquid flow liquid film thickness
下载PDF
Effects of Atmospheric Pressure on Developmental Characteristics and the Stability of Air Entraining Agent for Concrete
6
作者 李立辉 牛开民 +3 位作者 TIAN Bo CHEN Xin FU Ziqian ZHU Xuwei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期979-989,共11页
In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments we... In order to ascertain the effects of atmospheric pressure on developmental characteristics and the stability of AEA(air-entraining agent)solution bubbles,AEA solution experiments and AEA solution bubble experiments were,respectively,conducted in Peking(50 m,101.2 kPa)and Lhasa(3,650 m,63.1 kPa).Surface tensions and inflection-point concentrations were tested based on AEA solutions,whilst developmental characteristics,thicknesses and elastic coefficients of liquid films were tested based on air bubbles of AEA solutions.The study involved three types of AEAs,which were TM-O,226A,and 226S.The experimental results show that initial sizes of TM-O,226A,and 226S are,respectively,increased by 43.5%,17.5%,and 3.8%.With the decrease of ambient pressure,the drainage rate and the drainage index of AEA solution bubbles increase.Interference experiments show that the liquid film thicknesses of all tested AEA solution bubbles are in micron scales.When the atmospheric pressure decreases from 101.2 to 63.1 kPa,the liquid film thicknesses of three types of AEA solutions decrease in various degrees;and film elasticities at critical thicknesses increase.Liquid film of 226S solution bubbles is the most stable,presenting as a minimum thickness variation.It should be noted that elastic coefficient of liquid film only represents the level at critical thickness,thus it can not be applied as the only evaluating indicator of bubble stability.For a type of AEA,factors affecting the stability of its bubbles under low atmospheric pressure include initial bubbles size,liquid film thickness,liquid film elasticity,ambient temperature,etc. 展开更多
关键词 air-entraining agent surface tension bubble size liquid film thickness liquid film elasticity atmospheric pressure
下载PDF
The Behavior and Characteristics of the InterfacialWaves in Gas-Liquid Two-Phase Separated FlowThrough Downward Inclined Rectangular Channel
7
作者 Guangjun Li Lienjin Guo Xuejun Chen(National Laboratory of Multiphase Flow in Power Engineering,Xi’an Jiaotong University,Xi’an,710049,China) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1998年第1期29-36,共8页
An experimental investigation on the behavior and characteristics of interfacial waves in downward inclined rectangular channel was conducted. The interfacial waves were traced and measured by us-ing conductance techn... An experimental investigation on the behavior and characteristics of interfacial waves in downward inclined rectangular channel was conducted. The interfacial waves were traced and measured by us-ing conductance technique. The wav patterns were distinguished and defined. The characteristics of the interfacial waves, such as time-averaged film thickness, wave height, wave propagation speed,wavlength and wave frequency, were systematically examined in terms of gas and liquid superficial volumetric fiuxes. The effect of the inclination and flow channel geometry of the test section on the interfacial wav was also investigated. 展开更多
关键词 liquid film thickness gas-liquid two-phase flow interfacial waves experiment study
原文传递
Condensation heat transfer enhancement mechanism for vertical upflows by the phase separation concept at small gravity 被引量:3
8
作者 Qicheng Chen Dongliang Sun 《Science Bulletin》 SCIE EI CAS CSCD 2015年第20期1759-1767,共9页
In the field of aerospace, minimum and seal of equipments cause the increase in the thermal loading sharply. Due to the lack of driving force, the performance of conventional condenser deteriorates greatly under the s... In the field of aerospace, minimum and seal of equipments cause the increase in the thermal loading sharply. Due to the lack of driving force, the performance of conventional condenser deteriorates greatly under the small gravity environment, which leads to reduction in the service life of equipments. In this study, a passive condenser, developed on basis of the phase separation concept,is utilized to improve the performance of the condensation heat transfer under the small gravity environment. As a result of the limitation of experiments, the mechanisms of heat transfer enhancement of the phase separation condenser tube are revealed through numerical simulation based on the volume-of-fluid(VOF) method. The following conclusions could be obtained:(1) A novel phase distribution of ‘‘gas near the tube wall and liquid in the tube core'' is formed. The thin liquid film is indeed created after the flow pattern modulation by inserting mesh cylinder.(2)The condensation quantity for single bubble in the annular region increases about 16 times greater than that in the bare tube region in the case of Jl= 0.0574 m/s and Jg= 0.0229 m/s.(3) Gas volume fraction affects the parameters of liquid film thickness, bubble length and liquid bridge length. The increase in the gas volume fraction results in the decrease in the evaluation index from21.56 to 12.82. The evaluation index is defined as the ratio of the condensation quantities per unit tube length of the annular region and the bare tube region. 展开更多
关键词 Condensation heat transfer PHASESEPARATION Small gravity liquid film thickness
原文传递
Study on Characteristics of Steady Flow Condensation Heat Transfer in a Tube under Zero-Gravitation 被引量:2
9
作者 Qn Wei(Harbin Institute of Technology, Harbin 150001 China)Hou Zengqi Zhang Jiaxun (Chinese Academy of Space Technology, Beijing 100086, China) 《Journal of Thermal Science》 SCIE EI CAS CSCD 1996年第3期217-222,共6页
In this paper, the annular flow. model for in tube completed condensation is employed to predict the steady flow condensation heat transfer characteristics in a tube under zero-gravitation. In this easel it is propose... In this paper, the annular flow. model for in tube completed condensation is employed to predict the steady flow condensation heat transfer characteristics in a tube under zero-gravitation. In this easel it is proposed that vapor condenses on the liquid film surface. Due to the effect of surface tension, the liquid exists in the form of liquid film ring contacting wall; when the velocity of vapor core decreases to zerol the condensation process ends. Putting forward the physical and mathematical models, the problem is solved and the multi-order equation of the thickness of liquid film is obtained, which includes terms of the pressure gradient along axial direction, the friction force between vapor and liquid on interface. By computational calculation, this model can be used not only to predict the thickness of liquid film, the condensation pressure gradient along the axial direction, but also to determine the Nusselt number, the condensation length and the total flow pressure drop of condensation etc. At the end, the calculation results of the necessary condensation length are compared approximately with those from the experiments, which are obtained on the test set-up placed horizontally in gravitation field, and the deviation is analyzed. 展开更多
关键词 zero-gravitation the annuler flow model for in-tube completed condensation thickness of liquid film condensation pressure gradient Nusselt number total flow pressure drop ofcondensation condensation length
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部