A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that t...A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone(SZ) and the heat-affected zone(HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone(TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding(FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.展开更多
The skin friction and heat transfer occurring in the laminar boundary layerwhich caused by a vertical liquid jet impinging on a continuously moving horizontal plate werestudied. Similarity solutions for shear stress a...The skin friction and heat transfer occurring in the laminar boundary layerwhich caused by a vertical liquid jet impinging on a continuously moving horizontal plate werestudied. Similarity solutions for shear stress and heat distribution were obtained by using thehooting technique. The results show that the skin friction decreases with an increase of velocityparameter, the evolving of thermal boundary decrease with increasing in Prandtl number, but increasewith increasing of velocity parameter.展开更多
In humid environment,a particles can be picked up from the substrate by the capillary force,such as in the colloidal probe of atomic force microscopy technique.In this paper,a model of the capillary bridge between sph...In humid environment,a particles can be picked up from the substrate by the capillary force,such as in the colloidal probe of atomic force microscopy technique.In this paper,a model of the capillary bridge between spherical particles is used to study effect of the friction force in nanoparticles manipulation.Based on the Young-Laplace equation,Newtonian equation and adopted the constant volume boundary condition to calculate the particle motion,the friction force effects on nanoparticles manipulation are analyzed.The results show that the friction force has little effect on the particle motion,and the particle velocity decreases slightly in presence of the friction force.The friction force is opposed to the motion of the nanoparticle.As the tip velocity increases,there is a critical velocity beyond that the particle cannot be picked up from the substrate,and the critical velocity decreases in presence of the friction force.These provide a better understanding of the nanoparticle mechanical properties in humid environment.展开更多
Friction stir processing (FSP) is an important microstructural alteration process used recently in the engineering field. Grains alteration and hence the mechanical properties of the possessed zone are controlled by t...Friction stir processing (FSP) is an important microstructural alteration process used recently in the engineering field. Grains alteration and hence the mechanical properties of the possessed zone are controlled by the temperature, heating and cooling rate. In this work, AZ31B magnesium samples were friction stir processed in three different cooling conditions like air, water and cryogenic (liquid nitrogen) cooling. 1000 rpm and 60 mm/min were kept constant as tool rotation speed and traverse speed respectively in all the three mediums. The consequence of these conditions on thermal fields, axial force, resulting grain structure and mechanical properties?was?studied. It is found that the cryogenic treated friction stir processed samples exhibit fine grain structures and hence offer better mechanical properties than the air and water cooled processed samples.展开更多
A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and...A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and the other end immersed through a liquid-air interface. By measuring the resonant spectrum of the modified AFM cantilever, one is able to accurately determine the longitudinal friction coefficient ξv along the fiber axis associated with the vertical oscillation of the hanging fiber and the traversal friction coefficient ξh perpendicular to the fiber axis associated with the horizontal swing of the fiber around its joint with the cantilever. The technique is tested by measurement of the friction coefficient of a fluctuating (and slipping) contact line between the glass fiber and the liquid interface. The experiment verifies the theory and demonstrates its applications. The dual-mode mechanical resonator provides a powerful tool for the study of the contact line dynamics and the rheological property of anisotropic fluids.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51375511)the Research Program of Basic Research and Frontier Technology of Chongqing of China (No.cstc2016jcyj A0167)+3 种基金the Science and Technology Project in the Field of Social Development of Shapingba District of Chongqing of China (No.SF201602)the Key Industry Technology Innovation Fund of Science and Technology Development Board of Xiangcheng District of Suzhou of China (No.XJ201608)the Science and Technology Project of Beibei District of Chongqing of China (No.2016-27)the Fundamental and Advanced Technology Research Funds of Chongqing (No.cstc2015jcyjBX0103)
文摘A liquid-nitrogen-cooling friction stir spot welding(C-FSSW) technology was developed for welding AZ31 magnesium alloy sheets. The liquid-nitrogen cooling degraded the deformability of the welded materials such that the width of interfacial cracks increased with increasing cooling time. The grain size of the stirred zone(SZ) and the heat-affected zone(HAZ) of the C-FSSW-welded joints decreased, whereas that of the thermomechanically affected zone(TMAZ) increased with increasing cooling time. The maximum tensile shear load of the C-FSSW-welded joints welded with a cooling time of 5 or 7 s was larger than that of the friction stir spot welding(FSSW)-welded joint, and the tensile shear load decreased with increasing cooling time. The microhardness of the C-FSSW-welded joints was greater than that of the FSSW-welded joint. Moreover, the microhardness of the SZ and the HAZ of the C-FSSW-welded joints increased, whereas that of the TMAZ decreased, with increasing cooling time.
基金[This work was financially supported by "973" key foundation of China (No.G 1998061510).]
文摘The skin friction and heat transfer occurring in the laminar boundary layerwhich caused by a vertical liquid jet impinging on a continuously moving horizontal plate werestudied. Similarity solutions for shear stress and heat distribution were obtained by using thehooting technique. The results show that the skin friction decreases with an increase of velocityparameter, the evolving of thermal boundary decrease with increasing in Prandtl number, but increasewith increasing of velocity parameter.
文摘In humid environment,a particles can be picked up from the substrate by the capillary force,such as in the colloidal probe of atomic force microscopy technique.In this paper,a model of the capillary bridge between spherical particles is used to study effect of the friction force in nanoparticles manipulation.Based on the Young-Laplace equation,Newtonian equation and adopted the constant volume boundary condition to calculate the particle motion,the friction force effects on nanoparticles manipulation are analyzed.The results show that the friction force has little effect on the particle motion,and the particle velocity decreases slightly in presence of the friction force.The friction force is opposed to the motion of the nanoparticle.As the tip velocity increases,there is a critical velocity beyond that the particle cannot be picked up from the substrate,and the critical velocity decreases in presence of the friction force.These provide a better understanding of the nanoparticle mechanical properties in humid environment.
文摘Friction stir processing (FSP) is an important microstructural alteration process used recently in the engineering field. Grains alteration and hence the mechanical properties of the possessed zone are controlled by the temperature, heating and cooling rate. In this work, AZ31B magnesium samples were friction stir processed in three different cooling conditions like air, water and cryogenic (liquid nitrogen) cooling. 1000 rpm and 60 mm/min were kept constant as tool rotation speed and traverse speed respectively in all the three mediums. The consequence of these conditions on thermal fields, axial force, resulting grain structure and mechanical properties?was?studied. It is found that the cryogenic treated friction stir processed samples exhibit fine grain structures and hence offer better mechanical properties than the air and water cooled processed samples.
基金supported by the Research Grants Council of Hong Kong,China(Grant Nos.605013,604211,and SRFI11/SC02)the National Natural Science Foundation of China(Grand Nos.10974259 and 11274391)
文摘A dual-mode mechanical resonator using an atomic force microscope (AFM) as a force sensor is developed. The resonator consists of a long vertical glass fiber with one end glued onto a rectangular cantilever beam and the other end immersed through a liquid-air interface. By measuring the resonant spectrum of the modified AFM cantilever, one is able to accurately determine the longitudinal friction coefficient ξv along the fiber axis associated with the vertical oscillation of the hanging fiber and the traversal friction coefficient ξh perpendicular to the fiber axis associated with the horizontal swing of the fiber around its joint with the cantilever. The technique is tested by measurement of the friction coefficient of a fluctuating (and slipping) contact line between the glass fiber and the liquid interface. The experiment verifies the theory and demonstrates its applications. The dual-mode mechanical resonator provides a powerful tool for the study of the contact line dynamics and the rheological property of anisotropic fluids.