期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Directional Solidification Assisted by Liquid Metal Cooling 被引量:24
1
作者 Jian ZHANG Langhong LOU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期289-300,共12页
An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the ... An overview of the development and current status of the directional solidification process assisted by liquid metal cooling (LMC) has been presented in this paper. The driving force of the rapid development of the LMC process has been analyzed by considering the demands of (1) newer technologies that can provide higher thermal gradients for alleviated segregation in advanced alloy systems, and (2) better production yield of the large directionally solidified superalloy components. The brief history of the industrialization of the LMC process has been reviewed, followed by the discussion on the LMC parameters including selection of the cooling media, using of the dynamic baffle, and the influence of withdrawal rates and so on. The microstructure and mechanical properties of the traditional superalloys processed by LMC, as well as the new alloys particularly developed for LMC process were then described. Finally, future aspects concerning the LMC process have been summarized. 展开更多
关键词 Directional solidification liquid metal cooling SUPERALLOYS MICROSTRUCTURE Mechanical properties
下载PDF
Flow and thermal modeling of liquid metal in expanded microchannel heat sink
2
作者 Mingkuan ZHANG Xudong ZHANG +2 位作者 Luna GUO Xuan LI Wei RAO 《Frontiers in Energy》 SCIE EI CSCD 2023年第6期796-810,共15页
Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In th... Liquid metal-based microchannel heat sinks (MCHSs) suffer from the low heat capacity of coolant, resulting in an excessive temperature rise of coolant and heat sink when dealing with high-power heat dissipation. In this paper, it was found that expanded space at the top of fins could distribute the heat inside microchannels, reducing the temperature rise of coolant and heat sink. The orthogonal experiments revealed that expanding the top space of channels yielded similar temperature reductions to changing the channel width. The flow and thermal modeling of expanded microchannel heat sink (E-MCHS) were analyzed by both using the 3-dimensional (3D) numerical simulation and the 1-dimensional (1D) thermal resistance model. The fin efficiency of E-MCHS was derived to improve the accuracy of the 1D thermal resistance model. The heat conduction of liquid metal in Z direction and the heat convection between the top surface of fins and the liquid metal could reduce the total thermal resistance (Rt). The above process was effective for microchannels with low channel aspect ratio, low mean velocity (Um) or long heat sink length. The maximum thermal resistance reduction in the example of this paper reached 36.0%. The expanded space endowed the heat sink with lower pressure, which might further reduce the pumping power (P). This rule was feasible both when fins were truncated (h_(2) < 0, h_(2) is the height of expanded channel for E-MCHS) and when over plate was raised (h_(2) > 0). 展开更多
关键词 liquid metal cooling heat sink expanded microchannel flow and thermal modeling
原文传递
Experimental study on the mechanism of flow blockage formation in fast reactor
3
作者 Wen-Hui Jin Song-Bai Cheng Xiao-Xing Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第6期171-182,共12页
Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structura... Various sources of solid particles might exist in the coolant flow of a liquid metal cooled fast reactor(e.g.,through chemical interaction between the coolant and impurities,air,or water,through corrosion of structural materials,or from damaged/molten fuel).Such particles may cause flow blockage accidents in a fuel assembly,resulting in a reduction in coolant flow,which potentially causes a local temperature rise in the fuel cladding,cladding failure,and fuel melt.To understand the blockage formation mechanism,in this study,a series of simulated experiments was conducted by releasing different solid particles from a release device into a reducer pipe using gravity.Through detailed analyses,the influence of various experimental parameters(e.g.,particle diameter,capacity,shape,and static friction coefficient,and the diameter and height of the particle release nozzle)on the blockage characteristics(i.e.,blockage probability and position)was examined.Under the current range of experimental conditions,the blockage was significantly influenced by the aforementioned parameters.The ratio between the particle diameter and outlet size of the reducer pipe might be one of the determining factors governing the occurrence of blockage.Specifically,increasing the ratio enhanced blockage(i.e.,larger probability and higher position within the reducer pipe).Increasing the particle size,particle capacity,particle static friction coefficient,and particle release nozzle diameter led to a rise in the blockage probability;however,increasing the particle release nozzle height had a downward influence on the blockage probability.Finally,blockage was more likely to occur in non-spherical particles case than that of spherical particles.This study provides a large experimental database to promote an understanding of the flow blockage mechanism and improve the validation process of fast reactor safety analysis codes. 展开更多
关键词 liquid metal cooled fast reactor Flow blockage Granular jamming Experimental study
下载PDF
Microstructural evolution of directionally solidified DZ125 superalloy castings with different solidification methods
4
作者 Ge Bingming Liu Lin +3 位作者 Zhang Jun Li Yafeng Fu Hengzhi Liu Xiaofu 《China Foundry》 SCIE CAS 2013年第1期24-28,共5页
The properties of Ni-base superalloy castings microstructure, and different solidification methods have are closely related to the uniformity of their as-cast serious effect on microstructural uniformity. In this pape... The properties of Ni-base superalloy castings microstructure, and different solidification methods have are closely related to the uniformity of their as-cast serious effect on microstructural uniformity. In this paper, the influences of high rate solidification (HRS) process (with or without superheating) and liquid metal cooling (LMC) process on the microstructure of DZ125 superalloy were investigated. Blade-shape castings were solidified at rates of 40 pm.s-1 to 110 tJm.s1 using HRS process and a comparative experiment was carried out at a rate of 70 IJm.s1 by LMC process. The optical microscope (OM), scanning electron microscope (SEM) were used to observe the microstructure and the grain size was analyzed using electron back scattered diffraction (EBSD) technique. Results show that for the castings by either HRS or LMC process, the primary dendrite arm spacing and size of 7' precipitates decrease with increasing the withdrawal rate; the dendrites and 7' precipitates at the upper section of the blade are coarser than those in the middle, especially for the HRS castings without high superheating technique. When the withdrawal rate is 70 iJm.s1, the castings by HRS with high superheating technique have the smallest PDAS with fine 7' precipitates; while the size distribution of 7' precipitates is more homogenous in LMC castings, and the number of larger grains in LMC castings is smaller than that in the HRS castings. Moreover, high superheating technique yields smaller grains in the castings. Both the LMC method and HRS with high superheating technique can be used to prepare castings with reduced maximum grain size. 展开更多
关键词 directional solidification microstructural evolution high rate solidification liquid metal cooling Ni-base superalloy
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部