The purpose of this study is to investigate the effect of fuel properties on liquid and vapor penetrations in evaporating spray systems. A recently developed model, which can simultaneously account for the finite ther...The purpose of this study is to investigate the effect of fuel properties on liquid and vapor penetrations in evaporating spray systems. A recently developed model, which can simultaneously account for the finite thermal conductivity, finite mass diffusivity and turbulence effects within atomizing multi-component liquid fuel sprays, is utilized for the numerical predictions. Two different multi-component fuels with different boiling temperatures,densities and other thermal properties are implemented in the KIVA-3V computational fluid dynamics(CFD)code to study the evaporation behaviors. A six-component surrogate fuel is used to emulate the relevant volatility property of the real diesel fuel, and a second bi-component fuel is chosen to represent a low boiling-temperature fuel. The numerical results are compared with the experimental data, and the representative results are obtained.For a lower density and lower boiling temperature fuel, the liquid penetration length is shorter. However, the vapor penetration lengths are not affected by the fuel type in terms of fuel volatility. Available experimental data are used for validation and appraisal of the multi-component evaporation model.展开更多
A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based cataly...A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based catalysts were characterized by XRD, TEM and BET techniques. Their catalytic performances were tested in a slurry-bed reactor under FTS reaction conditions. The drying and crystallization were carried out simultaneously during SCFD, therefore, the catalysts prepared by SCFD method have ideal structure and show the FTS performance superior to the others prepared by CD method. The FTS activity and selectivity were improved via adding Zn, Mn and K promoters, and less CH4 and CO2 as well as higher yield of C5+ products were achieved. The optimal performance of a 92% CO conversion and a 65% C5+ product yield was obtained over a catalyst with the component of Co/Zn/Mn/K = 100/50/10/7. Furthermore, the catalytic performance was studied under the conditions of liquid-phase and supercritical phase slurry-bed, and C5+ product yield were 57.4% and 65.4%, respectively. In summary, better catalytic performance was obtained using the nanosized catalyst prepared by SCFD method under supercritical reaction conditions, resulting in higher conversion of CO, less CO2 byproduct, and higher yield of C5+ products.展开更多
A rapid, sensitive, and robust reversed-phase liquid chromatography with tandem mass spectrometry method was developed and validated for the determination of total and unbound ceritinib, a secondgeneration ALK inhibit...A rapid, sensitive, and robust reversed-phase liquid chromatography with tandem mass spectrometry method was developed and validated for the determination of total and unbound ceritinib, a secondgeneration ALK inhibitor, in patient plasma and brain tumor tissue samples. Sample preparation involved simple protein precipitation with acetonitrile. Chromatographic separation was achieved on a Waters ACQUITY UPLC BEH C_(18) column using a 4-min gradient elution consisting of mobile phase A(0.1% formic acid in water) and mobile phase B(0.1% formic acid in acetonitrile), at a flow rate of 0.4 m L/min. Ceritinib and the internal standard([^(13)C_6]ceritinib) were monitored using multiple reaction monitoring mode under positive electrospray ionization. The lower limit of quantitation(LLOQ) was 1 n M of ceritinib in plasma. The calibration curve was linear over ceritinib concentration range of 1–2000 n M in plasma. The intra-and interday precision and accuracy were within the generally accepted criteria for bioanalytical method( o15%).The method was successfully applied to assess ceritinib brain tumor penetration, as assessed by the unbound drug brain concentration to unbound drug plasma concentration ratio, in patients with brain tumors.展开更多
基金the Third Round"985 Project"Through the University of Michigan-Shanghai Jiao Tong University Joint Institute(No.TS0321337001)
文摘The purpose of this study is to investigate the effect of fuel properties on liquid and vapor penetrations in evaporating spray systems. A recently developed model, which can simultaneously account for the finite thermal conductivity, finite mass diffusivity and turbulence effects within atomizing multi-component liquid fuel sprays, is utilized for the numerical predictions. Two different multi-component fuels with different boiling temperatures,densities and other thermal properties are implemented in the KIVA-3V computational fluid dynamics(CFD)code to study the evaporation behaviors. A six-component surrogate fuel is used to emulate the relevant volatility property of the real diesel fuel, and a second bi-component fuel is chosen to represent a low boiling-temperature fuel. The numerical results are compared with the experimental data, and the representative results are obtained.For a lower density and lower boiling temperature fuel, the liquid penetration length is shorter. However, the vapor penetration lengths are not affected by the fuel type in terms of fuel volatility. Available experimental data are used for validation and appraisal of the multi-component evaporation model.
基金supported by Research Fund for the Doctoral Program of Higher Education (China,No.20050010014)
文摘A series of nanosized Co/Zn/Mn/K composite catalysts for Fischer-Tropsch synthesis (FTS) were prepared by supercritical fluid drying (SCFD) method and common drying (CD) method. The nanosized cobalt-based catalysts were characterized by XRD, TEM and BET techniques. Their catalytic performances were tested in a slurry-bed reactor under FTS reaction conditions. The drying and crystallization were carried out simultaneously during SCFD, therefore, the catalysts prepared by SCFD method have ideal structure and show the FTS performance superior to the others prepared by CD method. The FTS activity and selectivity were improved via adding Zn, Mn and K promoters, and less CH4 and CO2 as well as higher yield of C5+ products were achieved. The optimal performance of a 92% CO conversion and a 65% C5+ product yield was obtained over a catalyst with the component of Co/Zn/Mn/K = 100/50/10/7. Furthermore, the catalytic performance was studied under the conditions of liquid-phase and supercritical phase slurry-bed, and C5+ product yield were 57.4% and 65.4%, respectively. In summary, better catalytic performance was obtained using the nanosized catalyst prepared by SCFD method under supercritical reaction conditions, resulting in higher conversion of CO, less CO2 byproduct, and higher yield of C5+ products.
基金supported by the United States Public Health Service Cancer Center Support Grant P30 CA022453Novartis for providing the study drug and isotope-labeled internal standard and providing financial support for the clinical study
文摘A rapid, sensitive, and robust reversed-phase liquid chromatography with tandem mass spectrometry method was developed and validated for the determination of total and unbound ceritinib, a secondgeneration ALK inhibitor, in patient plasma and brain tumor tissue samples. Sample preparation involved simple protein precipitation with acetonitrile. Chromatographic separation was achieved on a Waters ACQUITY UPLC BEH C_(18) column using a 4-min gradient elution consisting of mobile phase A(0.1% formic acid in water) and mobile phase B(0.1% formic acid in acetonitrile), at a flow rate of 0.4 m L/min. Ceritinib and the internal standard([^(13)C_6]ceritinib) were monitored using multiple reaction monitoring mode under positive electrospray ionization. The lower limit of quantitation(LLOQ) was 1 n M of ceritinib in plasma. The calibration curve was linear over ceritinib concentration range of 1–2000 n M in plasma. The intra-and interday precision and accuracy were within the generally accepted criteria for bioanalytical method( o15%).The method was successfully applied to assess ceritinib brain tumor penetration, as assessed by the unbound drug brain concentration to unbound drug plasma concentration ratio, in patients with brain tumors.