Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves a...Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves and fragments.To explore the protective effect of polyurea elastomer on LFC,the damage characteristics of polyurea coated liquid-filled container(PLFC)under the combined loading of blast shock wave and fragments were studied experimentally.The microstructure of the polyurea layer was observed by scanning electron microscopy,and the fracture and self-healing phenomena were analyzed.The simulation approach was used to explain the combined blast-and fragments-induced on the PLFC in detail.Finally,the effects of shock wave and fragment alone and in combination on the damage of PLFC were comprehensively compared.Results showed that the polyurea reduces the perforation rate of the fragment to the LFC,and the self-healing phenomenon could also reduce the liquid loss rate inside the container.The polyurea reduces the degree of depression in the center of the LFC,resulting in a decrease in the distance between adjacent fragments penetrating the LFC,and an increase in the probability of transfixion and fracture between holes.Under the close-in blast,the detonation shock wave reached the LFC before the fragment.Polyurea does not all have an enhanced effect on the protection of LFC.The presence of internal water enhances the anti-blast performance of the container,and the hydrodynamic ram(HRAM)formed by the fragment impacting the water aggravated the plastic deformation of the container.The combined action has an enhancement effect on the deformation of the LFC.The depth of the container depression was 27%higher than that of the blast shock wave alone;thus,it cannot be simply summarized as linear superposition.展开更多
A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more ...The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.展开更多
Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenome...Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.展开更多
The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-...The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-thickness product (fd) for the test of pipes filled with viscous liquid are chosen according to APF and attenuation distributions. The results show that the APF magnitude distribution is an important parameter in choosing the modes and parameters. A particular mode has weak dispersion in ranges of fd values with large group velocity, while other modes with smaller group velocity in the same fd ranges have stronger dispersion. It has been observed that, within these ranges, the chosen mode has a larger APF on the (pipe’s) wall. Therefore, in the region of fd values where a particular mode has a large group velocity, this mode will be effective to be used in testing elastic pipes filled with viscous liquid. The results obtained from both the APF analysis and attenuation distribution are consistent.展开更多
Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection...Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.展开更多
Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principl...Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.展开更多
In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves indu...In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves induced by dynamic loadings and liquid-filled rock joints is therefore crucial.In this study,an auxiliary device for simulating the liquid-filled layer was developed to analyze the dynamic response characteristics of liquid-filled rock joints in laboratory.Granite and polymethyl methacrylate(PMMA)specimens were chosen for testing,and high-amplitude shock waves induced by a split Hopkinson pressure bar(SHPB)were used to produce dynamic loadings.Impact loading tests were conducted on liquid-filled rock joints with different joint inclinations.The energy propagation coefficient and peak liquid pressure were proposed to investigate the energy propagation and attenuation of waves propagating across the joints,as well as the dynamic response characteristics of the liquid in the liquid-filled rock joints.For the inclination angle range considered herein,the experimental results showed that the energy propagation coefficient gently diminished with increasing joint inclination,and smaller coefficient values were obtained for granite specimens compared with PMMA specimens.The peak liquid pressure exhibited a gradually decreasing trend with increasing joint inclination,and the peak pressure for granite specimens was slightly higher than that for PMMA specimens.Overall,this paper may provide a considerably better method for studying liquid-filled rock joints at the laboratory scale,and serves as a guide for interpreting the underlying mechanisms for interactions between stress waves and liquid-filled rock joints.展开更多
The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.Th...The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.The effect of Reynolds number and Mach number on drag coefficient is considered,the axial and radial growth models of the cavity are established respectively.The relative errors between the cavity length calculated by the axial growth model,the cavity diameter calculated by the radial growth model and Ma L.Y.test results are less than 20%,which verifies the effectiveness of the axial and radial growth models.Finally,numerical simulation is carried out to study the growth characteristics of the cavity caused by the projectile impacting the satellite tank at the velocity of 4000 m/s.The cavity length and diameter calculated by the axial and radial growth models agree well with those obtained by simulation results,indicating that the cavity length and diameter in satellite tank can be accurately calculated by the axial and radial growth models.展开更多
Using spherical coordinates, the coupling nonlinear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O varia- tional principle, and the viscous damping is int...Using spherical coordinates, the coupling nonlinear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O varia- tional principle, and the viscous damping is introduced via the liquid dissipation function. The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation. Normal differential equations are obtained through the Galerkin method. An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation. The fixed and slosh masses, as well as the spring and damping constants, are determined in such a way as to satisfy the principle of equivalence. Numerical simulations illustrate the theoretical results in this paper as well.展开更多
Nonlinear dynamics of liquid-filled rectangular tank with elastic appendages are studied. Based on the assumption of ideal fluid, the coupling dynamic equations of rigid tank, elastic appendages and liquid fuel are de...Nonlinear dynamics of liquid-filled rectangular tank with elastic appendages are studied. Based on the assumption of ideal fluid, the coupling dynamic equations of rigid tank, elastic appendages and liquid fuel are derived using H-O principle. In the case of pitch excitation, the modified potential function and wave height function are introduced to describe the moving boundary of fluid, then Galerkin's method is used to discretize the dynamic equations into ordinary differential equations. The natural frequencics of the coupling system are formulated in liquid depth, the length of the tank, etc. The formulae are confirmed by numerical simulations, which also show that the effects of liquid and elastic appendages on the attitude angular of rigid.展开更多
This article reports an experimental investigation on the axial impact buckling of thin metallic cylindrical shells fully filled with water. Low velocity impact tests are carried out by DHR-9401 drop hammer rig. The w...This article reports an experimental investigation on the axial impact buckling of thin metallic cylindrical shells fully filled with water. Low velocity impact tests are carried out by DHR-9401 drop hammer rig. The whole process of dynamic buckling is simulated using LS-DYNA computer code. The consistency between experimental observation and numerical simulation is quite satisfactory. The investigation indicates that quite high internal hydrodynamic pressure occurs inside the shell during the impact process. Under the combined action of the high internal pressure and axial compression plastic buckling occurs easily in the thin-walled shells and buckling modes take on regular and axisymmetric wrinkles.展开更多
Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired...Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired in two independent parts.The interference jet speed interval,the escape jet speed interval,and the surplus depth are calculated on the basis of the virtual origin theory.The experimental results,including the velocity of the escaped jet tip and the surplus depth of penetration,are consistent with the theoretical results.Experiments show that the theory can describe the interaction process of the target with a shaped charge jet.展开更多
The nonlinear governing equations of the liquid sloshing modals in a cylindrical storage tank are established. Through analytical analysis, the analytical expressions of the solutions of this kind of system are obtain...The nonlinear governing equations of the liquid sloshing modals in a cylindrical storage tank are established. Through analytical analysis, the analytical expressions of the solutions of this kind of system are obtained. With different parameters, the dynamical behaviors of the solutions are different from the trivial ones. To prevent system instability, two selection principles that the stiffness equations are positive-definite and the nonlinear terms of the system are not regenerative elements are given. Meanwhile, numerical simulations are also given, which confirm the analytical results.展开更多
Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which cau...Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.展开更多
This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut...This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.展开更多
The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dyn...The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dynamics, a novel nonlinear dynamic model for three-axis liquid-filled spacecraft is presented, and in this paper, the multi-body dynamics method is utilized. In this model, the fuel slosh is represented by the motions of an equivalent sphere pendulum, and the fuel slosh is underactuated. The proposed dynamics model meets the demand of attitude controller design of liquid-filled spacecraft. Then, a nonlinear proportional-plus-derivative (PD) type controller is designed for the proposed model based on the Lyapunov direct approach. This controller can suppress the fuel slosh and stabilize the attitude of the liquid-filled spacecraft. Numerical simulations are presented to verify the effectiveness of the proposed nonlinear dynamic model and the designed underactuated controller when compared with the conventional control scheme.展开更多
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal...As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.展开更多
The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical ...The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.展开更多
Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the enti...Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12102480,52278543 and 51978660)Natural Science Foundation of Jiangsu Province(Grant No.BK20231489)。
文摘Liquid-filled containers(LFC)are widely used to store and transport petroleum,chemical reagents,and other resources.As an important target of military strikes and terrorist bombings,LFC are vulnerable to blast waves and fragments.To explore the protective effect of polyurea elastomer on LFC,the damage characteristics of polyurea coated liquid-filled container(PLFC)under the combined loading of blast shock wave and fragments were studied experimentally.The microstructure of the polyurea layer was observed by scanning electron microscopy,and the fracture and self-healing phenomena were analyzed.The simulation approach was used to explain the combined blast-and fragments-induced on the PLFC in detail.Finally,the effects of shock wave and fragment alone and in combination on the damage of PLFC were comprehensively compared.Results showed that the polyurea reduces the perforation rate of the fragment to the LFC,and the self-healing phenomenon could also reduce the liquid loss rate inside the container.The polyurea reduces the degree of depression in the center of the LFC,resulting in a decrease in the distance between adjacent fragments penetrating the LFC,and an increase in the probability of transfixion and fracture between holes.Under the close-in blast,the detonation shock wave reached the LFC before the fragment.Polyurea does not all have an enhanced effect on the protection of LFC.The presence of internal water enhances the anti-blast performance of the container,and the hydrodynamic ram(HRAM)formed by the fragment impacting the water aggravated the plastic deformation of the container.The combined action has an enhancement effect on the deformation of the LFC.The depth of the container depression was 27%higher than that of the blast shock wave alone;thus,it cannot be simply summarized as linear superposition.
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金Project supported by the National Natural Science Foundation of China(No.11972112)the Fundamental Research Funds for the Central Universities of China(Nos.N2103024 and N2103002)the Major Projects of Aero-Engines and Gasturbines(No.J2019-I-0008-0008)。
文摘The dynamic characteristics of a single liquid-filled pipe have been broadly studied in the previous literature.The parallel liquid-filled pipe(PLFP)system is also widely used in engineering,and its structure is more complex than that of a single pipe.However,there are few reports about the dynamic characteristics of the PLFPs.Therefore,this paper proposes improved frequency modeling and solution for the PLFPs,involving the logical alignment principle and coupled matrix processing.The established model incorporates both the fluid-structure interaction(FSI)and the structural coupling of the PLFPs.The validity of the established model is verified by modal experiments.The effects of some unique parameters on the dynamic characteristics of the PLFPs are discussed.This work provides a feasible method for solving the FSI of multiple pipes in parallel and potential theoretical guidance for the dynamic analysis of the PLFPs in engineering.
文摘Fluid-structure interaction (FSI) is essentially a dynamic phenomenon and always exists in fluid-filled pipe system. The four-equation model, which has been proved to be effective to describe and predict the phenomenon of FSI due to friction coupling and Poisson coupling being taken into account, is utilized to describe the FSI of fluid-filled pipe system. Terse compatibility equations are educed by the method of characteristics (MOC) to describe the fluid-filled pipe system. To shorten computing time needed to get the solutions under the condition of keeping accuracy requirement, two steps are adopted, firstly the time step Δt and divided number of the straight pipe are optimized, sec-ondly the mesh spacing Δz close to boundary is subdivided in several submeshes automatically ac-cording to the speed gradient of fluid. The mathematical model and arithmetic are validated by com-parisons between simulation solutions of two straight pipe systems and experiment known from lit-erature.
文摘The axial power flow (APF) magnitude and attenuation distributions of ultrasonic longitudinal guided waves in viscous liquid-filled elastic pipes are investigated. The optimal location, optimal mode and its frequency-thickness product (fd) for the test of pipes filled with viscous liquid are chosen according to APF and attenuation distributions. The results show that the APF magnitude distribution is an important parameter in choosing the modes and parameters. A particular mode has weak dispersion in ranges of fd values with large group velocity, while other modes with smaller group velocity in the same fd ranges have stronger dispersion. It has been observed that, within these ranges, the chosen mode has a larger APF on the (pipe’s) wall. Therefore, in the region of fd values where a particular mode has a large group velocity, this mode will be effective to be used in testing elastic pipes filled with viscous liquid. The results obtained from both the APF analysis and attenuation distribution are consistent.
基金The authors gratefully acknowledge the support of the National Nature Science Foundation of China(No.11774378)。
文摘Due to the material problems and force majeure factors,the leakage will be occurred on the liquid-filled pipe resulting in waste of resources,environmental pollution and even endangering safety.Acoustic wave detection technology is widely used in buried pipeline leak detection,this technology mainly uses the wave(n=0,s=1)in the pipeline acoustic wave to locate the leak.When the leakage acoustic signal propagates along the liquid-filled pipe,the frequency dispersion characteristics can be obtained by wavelet decomposition.And there is a time delay(time difference)value between the leaky acoustic signals collected by the sensors at both ends of the leak.The outputs show that the results obtained by wavelet decomposition are in good agreement with the theoretical calculation results.Based on the obtained dispersion relation,the time delay values at different characteristic frequencies are analyzed by the cross-correlation method,and the leak location accuracy is discussed.This research content provides theoretical support and engineering application guidance for pipe leakage location technology.
基金supported by the National Natural Science Foundation of China (11072030)
文摘Attitude maneuver of liquid-filled spacecraft with an appendage as a cantilever beam by momentum wheel is studied. The dynamic equations are derived by conserva- tion of angular momentum and force equilibrium principle. A feedback control strategy of the momentum wheel is ap- plied for the attitude maneuver. The residual nutation of the spacecraft in maneuver process changes with some chosen parameters, such as steady state time, locations of the liq- uid container and the appendage, and appendage parame- ters. The results indicate that locations in the second and fourth quadrants of the body-fixed coordinate system and the second quadrant of the wall of the main body are better choices for.placing the liquid containers and the appendage than other locations if they can be placed randomly. Higher density and thicker cross section are better for lowering the residual nutation if they can be changed. Light appendage can be modeled as a rigid body, which results in a larger residual nutation than a flexible model though. The resid- ual nutation decreases with increasing absolute value of the initial sloshing angular height.
基金financially supported by the National Key Research and Development Plan of China(Grant No.2018YFC1504902)the National Natural Science Foundation of China(Grant No.52079068)the State Key Laboratory of Hydroscience and Engineering,China(Grant No.2021-KY-04)。
文摘In underground rock engineering,water-bearing faults may be subjected to dynamic loading,resulting in the coupling of hydraulic and dynamic hazards.Understanding the interaction mechanism between the stress waves induced by dynamic loadings and liquid-filled rock joints is therefore crucial.In this study,an auxiliary device for simulating the liquid-filled layer was developed to analyze the dynamic response characteristics of liquid-filled rock joints in laboratory.Granite and polymethyl methacrylate(PMMA)specimens were chosen for testing,and high-amplitude shock waves induced by a split Hopkinson pressure bar(SHPB)were used to produce dynamic loadings.Impact loading tests were conducted on liquid-filled rock joints with different joint inclinations.The energy propagation coefficient and peak liquid pressure were proposed to investigate the energy propagation and attenuation of waves propagating across the joints,as well as the dynamic response characteristics of the liquid in the liquid-filled rock joints.For the inclination angle range considered herein,the experimental results showed that the energy propagation coefficient gently diminished with increasing joint inclination,and smaller coefficient values were obtained for granite specimens compared with PMMA specimens.The peak liquid pressure exhibited a gradually decreasing trend with increasing joint inclination,and the peak pressure for granite specimens was slightly higher than that for PMMA specimens.Overall,this paper may provide a considerably better method for studying liquid-filled rock joints at the laboratory scale,and serves as a guide for interpreting the underlying mechanisms for interactions between stress waves and liquid-filled rock joints.
文摘The high-speed impact of a projectile on a liquid-filled tank causes the hydraulic ram,in which a cavity is formed.To study the growth characteristics of the cavity,the formation mechanism of the cavity is analyzed.The effect of Reynolds number and Mach number on drag coefficient is considered,the axial and radial growth models of the cavity are established respectively.The relative errors between the cavity length calculated by the axial growth model,the cavity diameter calculated by the radial growth model and Ma L.Y.test results are less than 20%,which verifies the effectiveness of the axial and radial growth models.Finally,numerical simulation is carried out to study the growth characteristics of the cavity caused by the projectile impacting the satellite tank at the velocity of 4000 m/s.The cavity length and diameter calculated by the axial and radial growth models agree well with those obtained by simulation results,indicating that the cavity length and diameter in satellite tank can be accurately calculated by the axial and radial growth models.
基金supported by the National Natural Science Foundation of China(11102006,11172145)the Research Fund for the Doctoral Program of Higher Education(20101102120013)
文摘Using spherical coordinates, the coupling nonlinear dynamic system of a liquid-filled spherical tank, which can be excited discretionarily, is deduced by the H-O varia- tional principle, and the viscous damping is introduced via the liquid dissipation function. The kinetic equations of the coupling system are deduced by the relationship between the velocity of liquid particles and the disturbed liquid surface equation. Normal differential equations are obtained through the Galerkin method. An equivalent mechanical model is developed for liquid sloshing in a spherical tank subject to arbitrary excitation. The fixed and slosh masses, as well as the spring and damping constants, are determined in such a way as to satisfy the principle of equivalence. Numerical simulations illustrate the theoretical results in this paper as well.
基金Project supported by the National Natural Science Foundation of China (Nos. 10302013 and 10572022)
文摘Nonlinear dynamics of liquid-filled rectangular tank with elastic appendages are studied. Based on the assumption of ideal fluid, the coupling dynamic equations of rigid tank, elastic appendages and liquid fuel are derived using H-O principle. In the case of pitch excitation, the modified potential function and wave height function are introduced to describe the moving boundary of fluid, then Galerkin's method is used to discretize the dynamic equations into ordinary differential equations. The natural frequencics of the coupling system are formulated in liquid depth, the length of the tank, etc. The formulae are confirmed by numerical simulations, which also show that the effects of liquid and elastic appendages on the attitude angular of rigid.
基金the National Natural Science Foundation of China(19672039)the Shanxi Foundation for Returned Scholars from Abroad
文摘This article reports an experimental investigation on the axial impact buckling of thin metallic cylindrical shells fully filled with water. Low velocity impact tests are carried out by DHR-9401 drop hammer rig. The whole process of dynamic buckling is simulated using LS-DYNA computer code. The consistency between experimental observation and numerical simulation is quite satisfactory. The investigation indicates that quite high internal hydrodynamic pressure occurs inside the shell during the impact process. Under the combined action of the high internal pressure and axial compression plastic buckling occurs easily in the thin-walled shells and buckling modes take on regular and axisymmetric wrinkles.
基金supported by the National Natural Science Foundation of China (Grant No.11402122)the China Scholarship Council (201706845026)
文摘Based on the characteristic expanded hole of a shaped charge jet(SCJ) for target penetration and the reflow characteristics of liquids,the liquid-filled structure of a target disturbs the stability of the SCJ acquired in two independent parts.The interference jet speed interval,the escape jet speed interval,and the surplus depth are calculated on the basis of the virtual origin theory.The experimental results,including the velocity of the escaped jet tip and the surplus depth of penetration,are consistent with the theoretical results.Experiments show that the theory can describe the interaction process of the target with a shaped charge jet.
基金Project supported by the National Natural Science Foundation of China(Grant No.10632040)the Independent Innovation Foundation of Tianjin University
文摘The nonlinear governing equations of the liquid sloshing modals in a cylindrical storage tank are established. Through analytical analysis, the analytical expressions of the solutions of this kind of system are obtained. With different parameters, the dynamical behaviors of the solutions are different from the trivial ones. To prevent system instability, two selection principles that the stiffness equations are positive-definite and the nonlinear terms of the system are not regenerative elements are given. Meanwhile, numerical simulations are also given, which confirm the analytical results.
基金Fofinancially supported by the National Natural Science Foundation of China(Grant No.52271288)Peiyang Scholar Initiation Fund from Tianjin University。
文摘Mechanically lined pipe(MLP)is often used for offshore oil and gas transport because of its low cost and corrosion resistance.During installation and operation,the pipe may undergo severe bending deformation,which causes the liner to separate from the outer pipe and buckles,affecting the stability of the whole line.In this paper,the buckling response of MLP subjected to bending is investigated to clarify its bending characteristics by employing both experiments,numerical simulation,as theoretical methods.Two types of MLPs were manufactured with GB 45 carbon steel(SLP)and Al 6061(ALP)used as the outer pipe material,respectively.The hydraulic expansion and bending experiments of small-scale MLPs are conducted.In addition to the ovalized shape of the cross-section for the SLP specimens,the copper liner was found to wrinkle on the compressive side.In contrast,the liner of ALP remains intact without developing any wrinkling and collapse mode.In addition,a dedicated numerical framework and theoretical models were also established.It was found both the manufacturing and bending responses of the MLP can be well reproduced,and the predicted maximum moment and critical curvatures are in good agreement with the experimental results.
基金Project supported in part by the National Natural Science Foundation of China(Grant No.10874145)the Specialized Research Fund for Doctorial Program of Higher Education(Grant No.20091333110010)+1 种基金the Natural Science Foundation of Heibei Province, China(Grant No.F2009000481)the China Postdoctoral Science Foundation(Grant Nos.20080440014 and 200902046)
文摘This paper reports that, based on the electromagnetic scattering theory of the multipole method, a high-quality hollow beam is produced through a selectively liquid-filled photonic crystal fibre. Instead of a doughnut shape, a typical hollow beam is produced by other methods; the mode-field images of the hollow-beam photonic crystal fibre satisfy sixth-order rotation symmetry, according to the symmetry of the photonic crystal fibre (PCF) structure. A dark spot size of the liquid-filled photonic crystal fibre-generated hollow beam can be tuned by inserting liquid into the cladding region and varying the photonic crystal fibre structure parameters. The liquid-filled PCF makes a convenient and flexible tool for the guiding and trapping of atoms and the creation of all-fibre optical tweezers.
基金Sponsored by the Innovative Team Program of the National Natural Science Foundation of China ( Grant No. 61021002)
文摘The fuel slosh in the storage tanks affects the attitude dynamics of the liquid-filled spacecraft during orbit transferring. To describe the interactions between the fuel slosh dynamics and the spacecraft attitude dynamics, a novel nonlinear dynamic model for three-axis liquid-filled spacecraft is presented, and in this paper, the multi-body dynamics method is utilized. In this model, the fuel slosh is represented by the motions of an equivalent sphere pendulum, and the fuel slosh is underactuated. The proposed dynamics model meets the demand of attitude controller design of liquid-filled spacecraft. Then, a nonlinear proportional-plus-derivative (PD) type controller is designed for the proposed model based on the Lyapunov direct approach. This controller can suppress the fuel slosh and stabilize the attitude of the liquid-filled spacecraft. Numerical simulations are presented to verify the effectiveness of the proposed nonlinear dynamic model and the designed underactuated controller when compared with the conventional control scheme.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2021EEEVL0204 and 2018A02。
文摘As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes.
基金financially supported by National Natural Science Foundation of China(Grant Nos.52088102,51879249)Fundamental Research Funds for the Central Universities(Grant No.202261055)。
文摘The collapse pressure is a key parameter when RTPs are applied in harsh deep-water environments.To investigate the collapse of RTPs,numerical simulations and hydrostatic pressure tests are conducted.For the numerical simulations,the eigenvalue analysis and Riks analysis are combined,in which the Hashin failure criterion and fracture energy stiffness degradation model are used to simulate the progressive failure of composites,and the“infinite”boundary conditions are applied to eliminate the boundary effects.As for the hydrostatic pressure tests,RTP specimens were placed in a hydrostatic chamber after filled with water.It has been observed that the cross-section of the middle part collapses when it reaches the maximum pressure.The collapse pressure obtained from the numerical simulations agrees well with that in the experiment.Meanwhile,the applicability of NASA SP-8007 formula on the collapse pressure prediction was also discussed.It has a relatively greater difference because of the ignorance of the progressive failure of composites.For the parametric study,it is found that RTPs have much higher first-ply-failure pressure when the winding angles are between 50°and 70°.Besides,the effect of debonding and initial ovality,and the contribution of the liner and coating are also discussed.
基金supported by JSPS KAKENHI Grant Number 22K03947.
文摘Visualization experiments were conducted to clarify the operational characteristics of a polymer pulsating heat pipe(PHP).Hydrofluoroether(HFE)-7100 was used as a working fluid,and its filling ratio was 50%of the entire PHP channel.A semi-transparent PHP was fabricated using a transparent polycarbonate sheet and a plastic 3D printer,and the movements of liquid slugs and vapor plugs of the working fluid were captured with a high-speed camera.The video images were then analyzed to obtain the flow patterns in the PHP.The heat transfer characteristics of the PHPwere discussed based on the flowpatterns and temperature distributions obtainedwith thermocouples.Before starting heating,because of high wettability,large liquid slugs positioned at the evaporator section of the PHP.After starting heating,since the occurrence of boiling divided the large liquid slugs,oscillatory flowof smaller liquid slugs and vapor plugs was found in the PHP.Clear circulation flow of liquid slugs and vapor plugs was observed when the power input to the PHP was larger than 12.0 W.The flow patterns and temperature distributions confirmed that the circulation flow enhanced the heat transfer from the evaporator section to the condenser section of the PHP.In the circulation flow mode,large growth and contraction of vapor plugs were found one after another in all even-numbered PHP channels.However,the analysis of flow patterns clarified that the phase-change heat transfer rate by large growth and contraction of vapor plugs was 19%of the total heat transfer rate of the PHP.Although the generation of large vapor plugs was found in the PHP,most of the heat was transferred by the sensible heat of the working fluid.