Interfacial interactions involving Van der Waals force, hydrophobic attractive force and hydration exclusive force were investigated in this paper. The interfacial interactive free energy of a series of interfaces occ...Interfacial interactions involving Van der Waals force, hydrophobic attractive force and hydration exclusive force were investigated in this paper. The interfacial interactive free energy of a series of interfaces occurring between minerals, water, collectors and bubble was calculated. The results show that a Van der Waals attractive force and a hydrophobic attractive force exist between each mineral and water interface. The hydrophobic attractive force between molybdenite and water is markedly weaker than the hydrophobic attractive force between gangue and water. The hydrophobic attractive force between collector molecules and water is the main driving force that causes the collectors to become dispersed in the pulp. The strong hydrophobic attractive force between molybdenite and the bubble interface is the basic reason for the natural floatability of molybdenite. The Van der Waals force between molybdenite and the collectors is attractive in water solution, but it is not the cause of the main force between them. The main force that results in the collection effect is a hydrophobic attractive force caused by the Lewis acid-base interaction at the molybdenite surface. A floatation experiment shows that the adsorption intensity of the collector on the molybdenite surface is not the crucial factor for molybdenite floatation. Rather, the dispersing capability of the collector in the water phase and its selectivity for the various minerals in the floatation system are more important.展开更多
Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT...Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.展开更多
The solid-liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solidliquid co...The solid-liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solidliquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m^-2, respectively, with the error 〈2%. Meanwhile, both of the methods provide the rank of interfacial free energy by γ7100〉 γ7120 〉 γ 7110 〉 γ112 〉 γ111. The results of the present study are also in good agreement with experimental data and computational data in the literature.展开更多
采用乙炔等离子体浸没离子注入与沉积技术(P III-D)在医用涤纶缝合环材料表面沉积了一层类金刚石(DLC)薄膜。细菌黏附实验的结果证明沉积了类金刚石薄膜后的表面对五种细菌——金黄色葡萄球菌(S taphy lococcus aureus,SA)、表皮葡萄球...采用乙炔等离子体浸没离子注入与沉积技术(P III-D)在医用涤纶缝合环材料表面沉积了一层类金刚石(DLC)薄膜。细菌黏附实验的结果证明沉积了类金刚石薄膜后的表面对五种细菌——金黄色葡萄球菌(S taphy lococcus aureus,SA)、表皮葡萄球菌(S taphy lococcus ep iderm id is,SE)、大肠杆菌(E scherich ia co li,EC)、绿浓杆菌(P seudom onas aerug inosa,PA)和白色念珠菌(C and ida a lb icans,CA)的黏附均有明显的减少(P<0.05)。计算细菌与材料之间的黏附自由能ΔFadh表明:细菌对PET表面的黏附自由能为负值,而细菌对DLC表面的ΔFadh>0,因此细菌对DLC表面黏附过程难于发生,即使黏附也是可逆的。展开更多
基金Projects 50574107 supported by the National Natural Science Foundation of China 2002 by the Teaching and Research Award Program for OutstandingYoung Teachers in Higher Education Institutions of Ministry of Education of China
文摘Interfacial interactions involving Van der Waals force, hydrophobic attractive force and hydration exclusive force were investigated in this paper. The interfacial interactive free energy of a series of interfaces occurring between minerals, water, collectors and bubble was calculated. The results show that a Van der Waals attractive force and a hydrophobic attractive force exist between each mineral and water interface. The hydrophobic attractive force between molybdenite and water is markedly weaker than the hydrophobic attractive force between gangue and water. The hydrophobic attractive force between collector molecules and water is the main driving force that causes the collectors to become dispersed in the pulp. The strong hydrophobic attractive force between molybdenite and the bubble interface is the basic reason for the natural floatability of molybdenite. The Van der Waals force between molybdenite and the collectors is attractive in water solution, but it is not the cause of the main force between them. The main force that results in the collection effect is a hydrophobic attractive force caused by the Lewis acid-base interaction at the molybdenite surface. A floatation experiment shows that the adsorption intensity of the collector on the molybdenite surface is not the crucial factor for molybdenite floatation. Rather, the dispersing capability of the collector in the water phase and its selectivity for the various minerals in the floatation system are more important.
文摘Inspired by natural photosynthesis,fabricating high-performance S-scheme heterojunction is regarded as a successful tactic to address energy and environmental issues.Herein,NH_(2)-MIL-125(Ti)/Zn_(0.5)Cd_(0.5)S/NiS(NMT/ZCS/NiS)S-scheme heterojunction with interfacial coordination bonds is successfully synthesized through in-situ solvothermal strategy.Notably,the optimal NMT/ZCS/NiS S-scheme heterojunction exhibits comparable photocatalytic H_(2)evolution(PHE)rate of about 14876.7μmol h^(−1)g^(−1)with apparent quantum yield of 24.2%at 420 nm,which is significantly higher than that of recently reported MOFs-based photocatalysts.The interfacial coordination bonds(Zn–N,Cd–N,and Ni–N bonds)accelerate the separation and transfer of photogenerated charges,and the NiS as cocatalyst can provide more catalytically active sites,which synergistically improve the photocatalytic performance.Moreover,theoretical calculation results display that the construction of NMT/ZCS/NiS S-scheme heterojunction also optimize the binding energy of active site-adsorbed hydrogen atoms to enable fast adsorption and desorption.Photoassisted Kelvin probe force microscopy,in-situ irradiation X-ray photoelectron spectroscopy,femtosecond transient absorption spectroscopy,and theoretical calculations provide sufficient evidence of the S-scheme charge migration mechanism.This work offers unique viewpoints for simultaneously accelerating the charge dynamics and optimizing the binding strength between the active sites and hydrogen adsorbates over S-scheme heterojunction.
文摘The solid-liquid interfacial free energy and its anisotropy are crucial quantities in determining the microstructure and mechanical properties of materials. However, most researches mainly concerned the solidliquid coexistence at melting point. In this work, two methods, the critical nucleus method (CNM) and the capillary fluctuation method (CFM), were combined to get these quantities in undercooled system by molecular dynamics (MD) simulations. The melting point, Tolman length, interfacial free energy and its anisotropy were calculated, and good consistent results from these two methods are obtained. The results of interfacial free energy obtained by CNM and CFM are 103.79 and 102.13 mJ·m^-2, respectively, with the error 〈2%. Meanwhile, both of the methods provide the rank of interfacial free energy by γ7100〉 γ7120 〉 γ 7110 〉 γ112 〉 γ111. The results of the present study are also in good agreement with experimental data and computational data in the literature.
文摘采用乙炔等离子体浸没离子注入与沉积技术(P III-D)在医用涤纶缝合环材料表面沉积了一层类金刚石(DLC)薄膜。细菌黏附实验的结果证明沉积了类金刚石薄膜后的表面对五种细菌——金黄色葡萄球菌(S taphy lococcus aureus,SA)、表皮葡萄球菌(S taphy lococcus ep iderm id is,SE)、大肠杆菌(E scherich ia co li,EC)、绿浓杆菌(P seudom onas aerug inosa,PA)和白色念珠菌(C and ida a lb icans,CA)的黏附均有明显的减少(P<0.05)。计算细菌与材料之间的黏附自由能ΔFadh表明:细菌对PET表面的黏附自由能为负值,而细菌对DLC表面的ΔFadh>0,因此细菌对DLC表面黏附过程难于发生,即使黏附也是可逆的。