Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.H...Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.展开更多
We studied formaldehyde emission from uncoated particleboard with 16-mm thickness using the large chamber and the desiccator method. A chamber of 28.4 m3 was installed to simulate a mobile home. The formaldehyde off-g...We studied formaldehyde emission from uncoated particleboard with 16-mm thickness using the large chamber and the desiccator method. A chamber of 28.4 m3 was installed to simulate a mobile home. The formaldehyde off-gassing properties of particleboard were evaluated using the chamber. The relationship between the concentration obtained by the chamber and the values by the desiccator test was discussed in this study under different conditions of conditioning day, air exchange, and loading ratio. These two methods were compared and discussed regarding the formaldehyde emission level. Three loading ratios, 0.429 m2/m3, 0.264 m2/m3, and 0.132 m2/m3, were chosen to represent different applications of particleboard products. There was strong correlation between emissions and air exchange rates at equal product-loading ratios in the large chamber, the related coefficient R 2 exceeded 0.90. There was also an indication of a generic correlation between the large chamber and the two-hour desiccator test with a single product designated loading ratio, air exchange rate, and climatic conditions.展开更多
During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The respons...During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The response of leaves of E.acoroides to high light and desiccation was compared for seedlings and mature plants.Results show that the resistance of seedling and mature leaves to high light was quite similar,but to desiccation was very different.Seedling leaves were more sensitive to desiccation than the mature plant leaves,but had better water retention.The damage of desiccation to seedling leaves was mainly caused by dehydration,whereas that to mature plant leaves was caused by hypersaline toxicity.The recovery rate of PSⅡ of seedling leaves was significantly slower than that of the mature plants after the stresses disappeared,which may at least partly contribute to seedling mortality in the wild.In addition,compared to high light,desiccation seriously inhibited the recovery rate of PSⅡ activities even if the leaves became fully rehydrated to their normal relative water content(RWC)in the following re-immersion.Desiccation inhibited the recovery rate of RC/CS_(M)(reaction center per cross section(at t=t_(Fm)))to decrease the production of assimilatory power,which maybe the cause of the slower PSⅡ recovery in desiccation treatments.This study demonstrates that desiccation particularly coupling with high light have a very negative ef fect on the PSⅡ of E.acoroides during low tide and the sensitivity of seedlings and mature plants to desiccation is significantly different,which have important reference significance to choose an appropriate transplanting depth where seedlings and mature plants of E.acoroides not only receive sufficient light for growth,but also that minimize desiccation stress during low tide.展开更多
A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no availab...A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.展开更多
Characteristics of 13x molecular sieve, silica gel and DH 5 and DH 7 prepared by authors, were investigated for the solid desiccant cooling system. The adsorption isotherms of DH 5 and DH 7 were experimentally det...Characteristics of 13x molecular sieve, silica gel and DH 5 and DH 7 prepared by authors, were investigated for the solid desiccant cooling system. The adsorption isotherms of DH 5 and DH 7 were experimentally determined. The performance parameters of adsorption capacity, air humidity, regeneration temperature and cooling volume were tested and discussed in detail. The results show that the properties of new adsorbents DH 5 and DH 7 on desiccant cooling are much better than those of common desiccants. The maximum adsorption volumes of water on DH 5 and DH 7 are 0.72?kg/kg and 0.73 ?kg/kg, respectively. The desiccant cooling volumes of DH 7and DH 5 are 2.2 and 1.3 times larger than those of silica gel and 13x(molecular sieve), respectively, after regeneration at 100?℃. The cooling volume per mass unit of DH 5 is 1.9 times larger that of 13x.展开更多
As a seed transmitted pathogen, pea seed_borne mosaic virus (PSbMV) not only replicates in embryonic cells but can also withstand seed desiccation. To understand the mechanism of PSbMV tolerance to seed desiccation, ...As a seed transmitted pathogen, pea seed_borne mosaic virus (PSbMV) not only replicates in embryonic cells but can also withstand seed desiccation. To understand the mechanism of PSbMV tolerance to seed desiccation, the authors compared the stability of viral coat protein (CP) and the distribution of viral particles in the cotyledon cells of pea (Pisum sativum L.) embryos collected before and after the dehydration process. Before dehydration, when the embryo was fresh and immature, degradation of CP was observed and a predominantly perinuclear distribution of viral particles in the cotyledon cells was evident. After dehydration, when the embryo was dry and mature, degradation of CP did not occur and the perinuclear viral distribution disappeared. Instead, aggregates containing PSbMV CP were found in the cytoplasm. Electron microscopy showed that these aggregates were composed of PSbMV particles. The formation of PSbMV particle aggregates is apparently triggered by seed dehydration and may be favorable to the virus survival in the desiccated embryonic cells.展开更多
基金the financial support from the National Key Research and Development Program of China(2022YFB4600101)the National Natural Science Foundation of China(52175201,52005484,and 52205228)+6 种基金the Research Program of Science and Technology Department of Gansu Province(21YF5FA139 and 22JR5RA107)the Shandong Provincial Natural Science Foundation(ZR2023OE090)the Major Program(ZYFZFX-2)the Cooperation Foundation for Young Scholars(HZJJ23-02)of the Lanzhou Institute of Chemical Physics,CASthe Western Light Project,CAS(xbzg-zdsys-202007)the Taishan Scholars Programthe Oasis Scholar of Shihezi University。
文摘Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.
基金supported by the Special Fund of key discipline-Wood Science and Technology Zhejiang A & FUniversity (Project 201203)Jiangsu Overseas Research & Training Program for University Prominent Young & Middle-aged Teachers and Presidents
文摘We studied formaldehyde emission from uncoated particleboard with 16-mm thickness using the large chamber and the desiccator method. A chamber of 28.4 m3 was installed to simulate a mobile home. The formaldehyde off-gassing properties of particleboard were evaluated using the chamber. The relationship between the concentration obtained by the chamber and the values by the desiccator test was discussed in this study under different conditions of conditioning day, air exchange, and loading ratio. These two methods were compared and discussed regarding the formaldehyde emission level. Three loading ratios, 0.429 m2/m3, 0.264 m2/m3, and 0.132 m2/m3, were chosen to represent different applications of particleboard products. There was strong correlation between emissions and air exchange rates at equal product-loading ratios in the large chamber, the related coefficient R 2 exceeded 0.90. There was also an indication of a generic correlation between the large chamber and the two-hour desiccator test with a single product designated loading ratio, air exchange rate, and climatic conditions.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB42000000)the National Natural Science Foundation of China(No.32071577)+2 种基金the International Partnership Program of Chinese Academy of Sciences(No.GJHZ2039)the Shandong Provincial Natural Science Foundation(No.ZR201911130493)the Taishan Industrial Experts Program(No.Tscy20200102)。
文摘During low tide,the intertidal seagrass Enhalus acoroides is often exposed to high light and desiccation,which can seriously threaten its survival,at least partly by inhibiting photosystem Ⅱ(PSⅡ)activity.The response of leaves of E.acoroides to high light and desiccation was compared for seedlings and mature plants.Results show that the resistance of seedling and mature leaves to high light was quite similar,but to desiccation was very different.Seedling leaves were more sensitive to desiccation than the mature plant leaves,but had better water retention.The damage of desiccation to seedling leaves was mainly caused by dehydration,whereas that to mature plant leaves was caused by hypersaline toxicity.The recovery rate of PSⅡ of seedling leaves was significantly slower than that of the mature plants after the stresses disappeared,which may at least partly contribute to seedling mortality in the wild.In addition,compared to high light,desiccation seriously inhibited the recovery rate of PSⅡ activities even if the leaves became fully rehydrated to their normal relative water content(RWC)in the following re-immersion.Desiccation inhibited the recovery rate of RC/CS_(M)(reaction center per cross section(at t=t_(Fm)))to decrease the production of assimilatory power,which maybe the cause of the slower PSⅡ recovery in desiccation treatments.This study demonstrates that desiccation particularly coupling with high light have a very negative ef fect on the PSⅡ of E.acoroides during low tide and the sensitivity of seedlings and mature plants to desiccation is significantly different,which have important reference significance to choose an appropriate transplanting depth where seedlings and mature plants of E.acoroides not only receive sufficient light for growth,but also that minimize desiccation stress during low tide.
基金The National Natural Science Foundation of China(No.50778094)
文摘A new type of a heat pump driven three-stage lithium bromide liquid desiccant deep dehumidification processor is presented,which can dehumidify the outdoor humid air to a rather dry state,even when there is no available indoor exhaust air.The test results show that with an outdoor air temperature of 28 to 31 ℃ and an outdoor air humidity ratio of 11 to 14 g/kg,the supply air temperature and the supply air humidity ratio are 1.6 to 2.6 ℃ and 2.6 to 3.0 g/kg,respectively,and the coefficient of performance(COP)of the processor is 1.8.During the test,a liquid pipeline link problem leading to mixture losses of hot and cold liquid desiccants is found.These pipelines are modified.Then,the performance of the modified processor is investigated.And the experimental results show that with an outdoor air temperature of 25 to 32 ℃ and an outdoor air humidity ratio of 18 to 21 g/kg,the supply air temperature and the supply air humidity ratio are 3.2 to 4.0 ℃ and 3.4 to 3.6 g/kg,respectively,and the COP is 2.8.Finally,a mathematical model of the processor is established.The comparison of the simulation results and the test results of the processor exhibits that the pipeline modification improves the performance by about 20%.
文摘Characteristics of 13x molecular sieve, silica gel and DH 5 and DH 7 prepared by authors, were investigated for the solid desiccant cooling system. The adsorption isotherms of DH 5 and DH 7 were experimentally determined. The performance parameters of adsorption capacity, air humidity, regeneration temperature and cooling volume were tested and discussed in detail. The results show that the properties of new adsorbents DH 5 and DH 7 on desiccant cooling are much better than those of common desiccants. The maximum adsorption volumes of water on DH 5 and DH 7 are 0.72?kg/kg and 0.73 ?kg/kg, respectively. The desiccant cooling volumes of DH 7and DH 5 are 2.2 and 1.3 times larger than those of silica gel and 13x(molecular sieve), respectively, after regeneration at 100?℃. The cooling volume per mass unit of DH 5 is 1.9 times larger that of 13x.
文摘As a seed transmitted pathogen, pea seed_borne mosaic virus (PSbMV) not only replicates in embryonic cells but can also withstand seed desiccation. To understand the mechanism of PSbMV tolerance to seed desiccation, the authors compared the stability of viral coat protein (CP) and the distribution of viral particles in the cotyledon cells of pea (Pisum sativum L.) embryos collected before and after the dehydration process. Before dehydration, when the embryo was fresh and immature, degradation of CP was observed and a predominantly perinuclear distribution of viral particles in the cotyledon cells was evident. After dehydration, when the embryo was dry and mature, degradation of CP did not occur and the perinuclear viral distribution disappeared. Instead, aggregates containing PSbMV CP were found in the cytoplasm. Electron microscopy showed that these aggregates were composed of PSbMV particles. The formation of PSbMV particle aggregates is apparently triggered by seed dehydration and may be favorable to the virus survival in the desiccated embryonic cells.