The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in...The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed.展开更多
Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical...Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical knowledge into the machine learning(ML)model was proposed to predict the viscosity reliably.The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size,structure,and interactions of the ILs.Three strategies based on the residuals of the COSMO-RS model were created as the output of ML,where the strategy directly using experimental data was also studied for comparison.The performance of six ML algorithms was compared in all strategies,and the CatBoost model was identified as the optimal one.The strategies employing the relative deviations were superior to that using the absolute deviation,and the relative ratio revealed the systematic prediction error of the COSMO-RS model.The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set(R^(2)=0.9999,MAE=0.0325),reducing the average absolute relative deviation(AARD)in modeling from 52.45% to 1.54%.Features importance analysis indicated the average energy correction,solvation-free energy,and polarity moment were the key influencing the systematic deviation.展开更多
Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs...Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.展开更多
Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatili...Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase.展开更多
Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs...Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.展开更多
Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However...Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.展开更多
Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI...Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.展开更多
The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other...The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other parameters, such as pressure, loading and size, can also tune the liquid dynamics and induce glass transition, which makes the situation more complicated. Here, we performed molecular dynamics simulations for Ni_(50)Zr_(50) bulk liquid and nanodroplet to study the dynamics evolution in the complex multivariate phase space, especially along the isotherm with the change of pressure or droplet size. It is found that the short-time Debye–Waller factor universally determines the long-time relaxation dynamics no matter how the temperature, pressure or size changes. The basic correlation even holds at the local atomic scale. This finding provides general understanding of the microscopic mechanism of dynamic arrest and dynamic heterogeneity.展开更多
The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and...The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.展开更多
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest...To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.展开更多
Single-molecule junctions,integrating individual molecules as active components between electrodes,serve as fundamental building blocks for advanced electronic and sensing technologies.The application of ionic liquids...Single-molecule junctions,integrating individual molecules as active components between electrodes,serve as fundamental building blocks for advanced electronic and sensing technologies.The application of ionic liquids in single-molecule junctions represents a cutting-edge and rapidly evolving field of research at the intersection of nanoscience,materials chemistry,and electronics.This review explores recent advances where ionic liquids function as electrolytes,dielectric layers,and structural elements within single-molecule junctions,reshaping charge transport,redox reactions,and molecular behaviors in these nanoscale systems.We comprehensively dissect fundamental concepts,techniques,and modulation mechanisms,elucidating the roles of ionic liquids as gates,electrochemical controllers,and interface components in singlemolecule junctions.Encompassing applications from functional device construction to unraveling intricate chemical reactions,this review maps the diverse applications of ionic liquids in single-molecule junctions.Moreover,we propose critical future research topics in this field,including catalysis involving ionic liquids at the single-molecule level,functionalizing single-molecule devices using ionic liquids,and probing the structure and interactions of ionic liquids.These endeavors aim to drive technological breakthroughs in nanotechnology,energy,and quantum research.展开更多
Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of act...Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.展开更多
Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammo...Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.展开更多
It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarizatio...It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.展开更多
The paper introduces gas to liquids (GTL) as a monetising option from a technology, marketing and project perspective. GTL is complementary to LNG and pipelines. At the same time, using natural gas as a source for fue...The paper introduces gas to liquids (GTL) as a monetising option from a technology, marketing and project perspective. GTL is complementary to LNG and pipelines. At the same time, using natural gas as a source for fuels in the form of GTL helps countries around the world to diversify their energy supplies. Furthermore, gas-based products are inherently cleaner than oil products. Shell's proprietary GTL technology or SMDS (Shell Middle Distillates Synthesis), is discussed in some detail. The paper also covers the challenges for successful implementation of GTL projects and why Shell is well positioned to take a lead in the industry on the basis of its long standing and broad experience in GTL research, plant operations, marketing and excellent track record in mega projects in the last thirty years. Shell's commitment to GTL is best demonstrated by the recent signing of a Heads of Agreement with Qatar Petroleum for the construction of the world's largest GTL plant. A key success factor is Shell's experience with marketing quantities of high quality GTL products from its 12,500 barrels per day plant at Bintulu, Malaysia since 1993. Further marketing opportunities will arise when new GTL capacity comes on-stream in the middle east when more quantities will become available to bulk users. Amongst the most interesting market will be automotive transportation, where clean GTL fuels can be positioned as an 'alternative fuel beyond oil' providing energy security to host countries. Shell is actively engaging with a number of regulators, automotive companies and governments worldwide including China, to demonstrate the performance of GTL and its cost effectiveness in reducing local emissions. An added benefit is that GTL can use existing infrastructure and requires no investment. Finally, the paper briefly discusses the coal to liquids (CTL) process as an alternative route to produce high quality GTL products and the key issues relating to the process.展开更多
Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109....Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.展开更多
Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship...Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.展开更多
Light hydrocarbons(C1–C4) are fundamental raw materials in the petroleum and chemical industry. Separation and purification of structurally similar paraffin/olefin/alkyne mixtures are important for the production of ...Light hydrocarbons(C1–C4) are fundamental raw materials in the petroleum and chemical industry. Separation and purification of structurally similar paraffin/olefin/alkyne mixtures are important for the production of highpurity or even polymer-grade light hydrocarbons. However, traditional methods such as cryogenic distillation and solvent absorption are energy-intensive and environmentally unfriendly processes. Ionic liquids(ILs) as a new alternative to organic solvents have been proposed as promising green media for light hydrocarbon separation due to their unique tunable structures and physicochemical properties resulting from the variations of the cations and anions such as low volatility, high thermal stability, large liquidus range, good miscibility with light hydrocarbons, excellent molecular recognition ability and adjustable hydrophylicity/hydrophobicity. In this review, the recent progresses on the light hydrocarbon separation using ILs are summarized, and some parameters of ILs that influence the separation performance are discussed.展开更多
The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel.The influences of molar ratio of methanol to soybean oil,reaction temperatur...The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel.The influences of molar ratio of methanol to soybean oil,reaction temperature and amount of ionic liquids were investigated.The transesterification of soybean oil to biodiesel catalyzed by choline chloride·xZnCl2 ionic liquids showed many advantages such as mild conditions and lower cost.On the other hand,the non-ideal yield and complicated separation between biodiesel and soybean oil were also investigated and analyzed.The improvement on the systems of choline chloride·xZnCl2 was proposed for further investigation.展开更多
The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) ...The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.展开更多
基金the financial support from National Natural Science Foundation of China(No.21838004,22011530112)China ScholarshipCouncil(No.202208320253)+2 种基金STINT(CH2019-8287)the Swedish Research Councilthe financial support from Horizon-EIC,Pathfinder challenges,Grant Number:101070976.
文摘The melting points of ionic liquids(ILs)reported since 2020 were surveyed,collected,and reviewed,which were further combined with the previous data to provide a database with 3129 ILs ranging from 177.15 to 645.9 K in melting points.In addition,the factors that affect the melting point of ILs from macro,micro,and thermodynamic perspectives were summarized and analyzed.Then the development of the quantitative structure-property relationship(QSPR),group contribution method(GCM),and conductor-like screening model for realistic solvents(COSMO-RS)for predicting the melting points of ILs were reviewed and further analyzed.Combined with the evaluation together with the preliminary study conducted in this work,it shows that COSMO-RS is more promising and possible to further improve its performance,and a framework was thus proposed.
基金supported by the National Natural Science Foundation of China(21838004),STINT(CH2019-8287)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23-1467)the financial support from Horizon-EIC and Pathfinder challenges,Grant Number:101070976.
文摘Viscosity is one of the most important fundamental properties of fluids.However,accurate acquisition of viscosity for ionic liquids(ILs)remains a critical challenge.In this study,an approach integrating prior physical knowledge into the machine learning(ML)model was proposed to predict the viscosity reliably.The method was based on 16 quantum chemical descriptors determined from the first principles calculations and used as the input of the ML models to represent the size,structure,and interactions of the ILs.Three strategies based on the residuals of the COSMO-RS model were created as the output of ML,where the strategy directly using experimental data was also studied for comparison.The performance of six ML algorithms was compared in all strategies,and the CatBoost model was identified as the optimal one.The strategies employing the relative deviations were superior to that using the absolute deviation,and the relative ratio revealed the systematic prediction error of the COSMO-RS model.The CatBoost model based on the relative ratio achieved the highest prediction accuracy on the test set(R^(2)=0.9999,MAE=0.0325),reducing the average absolute relative deviation(AARD)in modeling from 52.45% to 1.54%.Features importance analysis indicated the average energy correction,solvation-free energy,and polarity moment were the key influencing the systematic deviation.
基金supported by the National Key Research and Development Program of China(2021YFB3802600)the National Natural Science Foundation of China(22278396,22378392,22178344)+1 种基金the Youth Innovation Promotion Association CAS(Y2021022)the Open Research Fund of State Key Laboratory of Mesoscience and Engineering(MESO-23-D17)。
文摘Ionic liquids(ILs)are an emerging class of media of fundamental importance for chemical engineering,especially due to their interaction with solid surfaces.Here,we explore the growth phenomenon of surface-confined ILs and reveal a peculiar structural transition behavior from order to disorder above a threshold thickness.This behavior can be explained by the variation of interfacial forces with increasing distance from the solid surface.Direct structural observation of different ILs highlights the influence of the ionic structure on the growth process.Notably,the length of the alkyl chain in the cation is found to be a determining factor for the ordering trend.Also,the thermal stability of surface-confined ILs is investigated in depth by controlling annealing treatments.It is found that the ordered monolayer ILs exhibit high robustness against high temperatures.Our findings provide new perspectives on the properties of surface-confined ILs and open up potential avenues for manipulating the structures of nanometer-thick IL films for various applications.
基金supported by the fundamental research funds for the central universities(2022SCUH0041,SCU2023D012).
文摘Increasing the 1,3,5-trioxane(TOX) concentration in the equilibrated vapor phase of TOX-H_(2)O system has been recognized as a challenge for the azeotrope. Ionic liquids(ILs) were used to improve the relative volatility of TOX to H_(2)O and destroy the azeotrope in the TOX-H2O system. The vapor-liquid equilibrium of TOX-H2O system at 101.3 kPa was studied with the addition of 1-butyl-3-methylimidazolium hydrogen sulfate, 1-hexyl-3-methylimidazolium hydrogen sulfate and 1-butyl-3-methylimidazolium nitrate, respectively. The results showed that the volatility of TOX increased with the increase in IL dosage. And the volatility of water decreased with the increase in IL dosage. The relative volatility of TOX to H_(2)O was improved with the increase in ILs dosage. The azeotrope could be destroyed with an IL mole fraction of about 0.10. A non-random two-liquid(NRTL) model was successfully used to correlate the experimental data. The interaction parameters were obtained by fitting the experimental data with the model. The results indicated that a strong interaction existed between ILs and water. The strong interaction improved the volatility of TOX and inhibited the volatility of water, and then intensified the relative volatility of TOX to H_(2)O. The results showed that an ILs with strong polarity and hydrophilicity may be a potential additive to improve the TOX concentration in the equilibrated vapor phase.
基金financially supported by the National Natural Science Foundation of China (Nos.22078135,21808092,21978119,22202088)。
文摘Porous ionic liquids have demonstrated excellent performance in the field of separation,attributed to their high specific surface area and efficient mass transfer.Herein,task-specific protic porous ionic liquids(PPILs)were prepared by employing a novel one-step coupling neutralization reaction strategy for extractive desulfurization.The single-extraction efficiency of PPILs reached 75.0%for dibenzothiophene.Moreover,adding aromatic hydrocarbon interferents resulted in a slight decrease in the extraction efficiency of PPILs(from 45.2%to 37.3%,37.9%,and 33.5%),indicating the excellent extraction selectivity of PPILs.The experimental measurements and density functional theory calculations reveal that the surface channels of porous structures can selectively capture dibenzothiophene by the stronger electrophilicity(Eint(HS surface channel/DBT)=-39.8 kcal mol^(-1)),and the multiple extraction sites of ion pairs can effectively enrich and transport dibenzothiophene from the oil phase into PPILs throughπ...π,C-H...πand hydrogen bonds interactions.Furthermore,this straightforward synthetic strategy can be employed in preparing porous liquids,offering new possibilities for synthesizing PPILs with tailored functionalities.
基金supported by the National Natural Science Foundation of China(22168002,22108070,21878078)the Natural Science Foundation of Guangxi Province(2020GXNSFAA159119)+2 种基金the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology(2021Z012)the Open Fund of the State Key Laboratory of Molecular Reaction Dynamics in DICP(SKLMRD-K202106)the Young Elite Scientists Sponsorship Program by CAST(2022QNRC001)。
文摘Extensive experimental studies have been performed on the Diels-Alder(DA)reactions in ionic liquids(ILs),which demonstrate that the IL environment can significantly influence the reaction rates and selectivity.However,the underlying microscopic mechanism remains ambiguous.In this work,the multiscale reaction density functional theory is applied to explore the effect of 1-butyl-3-methylimidazolium hexafluorophosphate([BMIM][PF_(6)])solvent on the reaction of cyclopentadiene(CP)with acrolein,methyl acrylate,or acrylonitrile.By analyzing the free energy landscape during the reaction,it is found that the polarization effect has a relatively small influence,while the solvation effect makes both the activation free energy and reaction free energy decrease.In addition,the rearrangement of local solvent structure shows that the cation spatial distribution responds more evidently to the reaction than the anion,and this indicates that the cation plays a dominant role in the solvation effect and so as to affect the reaction rates and selectivity of the DA reactions.
基金supported by the National Natural Science Foundation of China(nos.22168012 and 22208070)the Key Laboratory of Carbon-based Energy Molecular Chemical Utilization Technology in Guizhou Province(no.2023008)the Guizhou Province Outstanding Young Scientific and Technological Talents Program(no.YQK2023007).
文摘Water stability is one of the most important factors restricting the practical application of metal organic frameworks (MOFs). In this work, wefabricate a highly defective HKUST-1 framework with a mixed valence of CuI/CuIIby mechanical ball milling method. This defective HKUST-1is embellished by functionalized ionic liquids as hydrophobic armor, making the hybrid HIL1@HKUST-1 exhibits outstanding water stability,remarkable SO_(2) adsorption (up to 5.71 mmol g^(-1)), and record-breaking selectivity (1070 for SO_(2)/CO_(2) and 31,515 for SO_(2)/N_(2)) at 25 ℃ and0.1 bar, even in wet conditions.
基金Project supported by the National Natural Science Foundation of China (Grant No.52031016)。
文摘The dramatic temperature-dependence of liquids dynamics has attracted considerable scientific interests and efforts in the past decades, but the physics of which remains elusive. In addition to temperature, some other parameters, such as pressure, loading and size, can also tune the liquid dynamics and induce glass transition, which makes the situation more complicated. Here, we performed molecular dynamics simulations for Ni_(50)Zr_(50) bulk liquid and nanodroplet to study the dynamics evolution in the complex multivariate phase space, especially along the isotherm with the change of pressure or droplet size. It is found that the short-time Debye–Waller factor universally determines the long-time relaxation dynamics no matter how the temperature, pressure or size changes. The basic correlation even holds at the local atomic scale. This finding provides general understanding of the microscopic mechanism of dynamic arrest and dynamic heterogeneity.
基金supported by the National Natural Science Foundation of China(22125802,22078010).
文摘The separation of aromatics from aliphatics is essential for achieving maximum exploitation of oil resources in the petrochemical industry.In this study,a series of metal chloride-based ionic liquids were prepared and their performances in the separation of 1,2,3,4-tetrahydronaphthalene(tetralin)/dodecane and tetralin/decalin systems were studied.Among these ionic liquids,1-ethyl-3-methylimidazolium tetrachloroferrate([EMIM][FeCl_(4)])with the highest selectivity was used as the extractant.Density functional theory calculations showed that[EMIM][FeCl_(4)]interacted more strongly with tetralin than with dodecane and decalin.Energy decomposition analysis of[EMIM][FeCl_(4)]-tetralin indicated that electrostatics and dispersion played essential roles,and induction cannot be neglected.The van der Waals forces was a main effect in[EMIM][FeCl_(4)]-tetralin by independent gradient model analysis.The tetralin distribution coefficient and selectivity were 0.8 and 110,respectively,with 10%(mol)tetralin in the initial tetralin/dodecane system,and 0.67 and 19.5,respectively,with 10%(mol)tetralin in the initial tetralin/decalin system.The selectivity increased with decreasing alkyl chain length of the extractant.The influence of the extraction temperature,extractant dosage,and initial concentrations of the system components on the separation performance were studied.Recycling experiments showed that the regenerated[EMIM][FeCl_(4)]could be used repeatedly.
基金supported by the National Natural Science Foundation of China(No.51874221)the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF 11).
文摘To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.
基金primary financial supports from the National Key R&D Program of China(2021YFA1200102,2021YFA1200101,and 2022YFE0128700)the National Natural Science Foundation of China(22173050,22150013,21727806,and 21933001)+4 种基金the New Cornerstone Science Foundation through the XPLORER PRIZEthe Natural Science Foundation of Beijing(2222009)Beijing National Laboratory for Molecular Sciences(BNLMS202105)the Fundamental Research Funds for the Central Universities(63223056)“Frontiers Science Center for New Organic Matter”at Nankai University(63181206).
文摘Single-molecule junctions,integrating individual molecules as active components between electrodes,serve as fundamental building blocks for advanced electronic and sensing technologies.The application of ionic liquids in single-molecule junctions represents a cutting-edge and rapidly evolving field of research at the intersection of nanoscience,materials chemistry,and electronics.This review explores recent advances where ionic liquids function as electrolytes,dielectric layers,and structural elements within single-molecule junctions,reshaping charge transport,redox reactions,and molecular behaviors in these nanoscale systems.We comprehensively dissect fundamental concepts,techniques,and modulation mechanisms,elucidating the roles of ionic liquids as gates,electrochemical controllers,and interface components in singlemolecule junctions.Encompassing applications from functional device construction to unraveling intricate chemical reactions,this review maps the diverse applications of ionic liquids in single-molecule junctions.Moreover,we propose critical future research topics in this field,including catalysis involving ionic liquids at the single-molecule level,functionalizing single-molecule devices using ionic liquids,and probing the structure and interactions of ionic liquids.These endeavors aim to drive technological breakthroughs in nanotechnology,energy,and quantum research.
基金funded by the National Natural Science Foundation of China(82273881 and 82304386)Guangdong Basic and Applied Basic Research Foundation(2022A1515110476)+1 种基金the Open Fund of Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology(GDKL202214)SUMC Scientiffc Research Initiation Grant(510858046 and 510858056).
文摘Ionic liquids (ILs) have been proven to be an effective technology for enhancing drug transdermal absorption. However, due to the unique structural components of ILs, the design of efficient ILs and elucidation of action mechanisms remain to be explored. In this review, basic design principles of ideal ILs for transdermal drug delivery system (TDDS) are discussed considering melting point, skin permeability, and toxicity, which depend on the molar ratios, types, functional groups of ions and inter-ionic interactions. Secondly, the contributions of ILs to the development of TDDS through different roles are described: as novel skin penetration enhancers for enhancing transdermal absorption of drugs;as novel solvents for improving the solubility of drugs in carriers;as novel active pharmaceutical ingredients (API-ILs) for regulating skin permeability, solubility, release, and pharmacokinetic behaviors of drugs;and as novel polymers for the development of smart medical materials. Moreover, diverse action mechanisms, mainly including the interactions among ILs, drugs, polymers, and skin components, are summarized. Finally, future challenges related to ILs are discussed, including underlying quantitative structure-activity relationships, complex interaction forces between anions, drugs, polymers and skin microenvironment, long-term stability, and in vivo safety issues. In summary, this article will promote the development of TDDS based on ILs.
文摘Aluminum was electrodeposited with constant current on AZ31 magnesium alloy pretreated under optimized conditions from trimethyl-phenyl-ammonium chloride and anhydrous aluminum chloride (TMPAC-AlCl3) quaternary ammonium room temperature ionic liquids with benzene as a co-solvent. The corrosion resistance of the as-deposited Al layers was evaluated in 3.5% NaCl solution by the electrochemical technologies. The Al depositions were characterized by scanning electron microscopy equipped with energy dispersion X-ray. The results show that the microstructures of the Al depositions have spherical equiaxed grains obtained at a high current density, and bulk grains at a low current density. The Al deposition obtained at 12.3 mA/cm2 has a smooth and compact surface. The electrochemical measurements indicate that the thicker Al deposition can more effectively protect the Mg substrate. The Al deposition with bulk grains hardly protects the AZ31 Mg substrate from corrosion owing to its porosity.
文摘It is difficult to directly electroplate Al on Mg alloys. The effects of pretreatment parameters on the corrosion resistance of films obtained on AZ31 Mg alloy surface were studied by using potentiodynamic polarization curves, to produce a compact interfacial layer as zinc-immersion deposition. After the substrate was pretreated under optimized conditions, aluminum was electrodeposited on AZ31 from TMPAC-AlCl3 room temperature ionic liquids. The depositions were characterized by scanning electron microscope equipped with energy dispersion X-ray. The results show that the traditional pretreatment of Mg alloys was successfully used for the Al-electroplating process from TMPAC-AlCl3 ionic liquids. The entire procedure includes alkaline cleaning, chemical pickling, surface activation (400 mL/L HF acid, 10 min), zinc-immersion (20 min) and anhydrous treatment. A relatively compact zinc-immersion film was prepared on the substrate surface. A silvery-colored satin aluminum deposition was obtained on AZ31 from TMPAC-AlCl3 using direct current plating.
文摘The paper introduces gas to liquids (GTL) as a monetising option from a technology, marketing and project perspective. GTL is complementary to LNG and pipelines. At the same time, using natural gas as a source for fuels in the form of GTL helps countries around the world to diversify their energy supplies. Furthermore, gas-based products are inherently cleaner than oil products. Shell's proprietary GTL technology or SMDS (Shell Middle Distillates Synthesis), is discussed in some detail. The paper also covers the challenges for successful implementation of GTL projects and why Shell is well positioned to take a lead in the industry on the basis of its long standing and broad experience in GTL research, plant operations, marketing and excellent track record in mega projects in the last thirty years. Shell's commitment to GTL is best demonstrated by the recent signing of a Heads of Agreement with Qatar Petroleum for the construction of the world's largest GTL plant. A key success factor is Shell's experience with marketing quantities of high quality GTL products from its 12,500 barrels per day plant at Bintulu, Malaysia since 1993. Further marketing opportunities will arise when new GTL capacity comes on-stream in the middle east when more quantities will become available to bulk users. Amongst the most interesting market will be automotive transportation, where clean GTL fuels can be positioned as an 'alternative fuel beyond oil' providing energy security to host countries. Shell is actively engaging with a number of regulators, automotive companies and governments worldwide including China, to demonstrate the performance of GTL and its cost effectiveness in reducing local emissions. An added benefit is that GTL can use existing infrastructure and requires no investment. Finally, the paper briefly discusses the coal to liquids (CTL) process as an alternative route to produce high quality GTL products and the key issues relating to the process.
基金ACKNOWLEDGMENTS This work was supported by the Open Project Program of Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan University of Science and Technology, China (No.E21104), the National Natural Science Foundation of China (No.21201062 and No.21172066), and the International Cooperation Project (No.2013DFG60060).
文摘Quantum mechanics and molecular dynamics are used to simulate guanidinium ionic liquids. Results show that the stronger interaction exists between guanidine cation and chlorine anion with interaction energy about 109.216 kcal/mol. There are two types of spatial distribution for the title system: middle and top. Middle mode is a more stable conformation according to energy and geometric distribution. It is also verified by radial distribution function. The continuous increase of carbon dioxide (CO2) does not affect the structure of ionic liquids, but CO2 molecules are always captured by the cavity of ionic liquids.
基金This work was supported by the National Natural Science Foundation of China (No.21477121), and the Fundamental Research Funds for the Central Universities for the support of this work. The numerical calculations were performed on the super computing system in the Supercomputing Center at the University of Science and Technology of China.
文摘Due to the large number of ionic liquids (ILs) and their potential environmental risk, assessing the toxicity of ILs by ecotoxicological experiment only is insufficient. Quantitative structure- activity relationship (QSAR) has been proven to be a quick and effective method to estimate the viscosity, melting points, and even toxicity of ILs. In this work, the LC50 values of 30 imidazolium-based ILs were determined with Caenorhabditis elegans as a model animal. Four suitable molecular descriptors were selected on the basis of genetic function approximation algorithm to construct a QSAR model with an R^2 value of 0.938. The predicted lgLC50 in this work are in agreement with the experimental values, indicating that the model has good stability and predictive ability. Our study provides a valuable model to predict the potential toxicity of ILs with different sub-structures to the environment and human health.
基金Supported by the National Natural Science Foundation of China(No.21725603)Zhejiang Provincial Natural Science Foundation of China(LZ18B060001)the National Program for Support of Top-notch Young Professionals(H.X.)
文摘Light hydrocarbons(C1–C4) are fundamental raw materials in the petroleum and chemical industry. Separation and purification of structurally similar paraffin/olefin/alkyne mixtures are important for the production of highpurity or even polymer-grade light hydrocarbons. However, traditional methods such as cryogenic distillation and solvent absorption are energy-intensive and environmentally unfriendly processes. Ionic liquids(ILs) as a new alternative to organic solvents have been proposed as promising green media for light hydrocarbon separation due to their unique tunable structures and physicochemical properties resulting from the variations of the cations and anions such as low volatility, high thermal stability, large liquidus range, good miscibility with light hydrocarbons, excellent molecular recognition ability and adjustable hydrophylicity/hydrophobicity. In this review, the recent progresses on the light hydrocarbon separation using ILs are summarized, and some parameters of ILs that influence the separation performance are discussed.
基金Supported by the National High Technology Research and Development Program of China(2007AA06Z202)the National Key Technology Research and Development Program of China(2006BAC02A10)the Distinguished Young Scholars Foundation of Jilin Province(20060114)
文摘The inexpensive and moisture-stable Lewis-acidic ionic liquids were prepared and applied for transesterification of soybean oil to biodiesel.The influences of molar ratio of methanol to soybean oil,reaction temperature and amount of ionic liquids were investigated.The transesterification of soybean oil to biodiesel catalyzed by choline chloride·xZnCl2 ionic liquids showed many advantages such as mild conditions and lower cost.On the other hand,the non-ideal yield and complicated separation between biodiesel and soybean oil were also investigated and analyzed.The improvement on the systems of choline chloride·xZnCl2 was proposed for further investigation.
基金Supported by the National Natural Science Foundation of China (20576025). the National Key Basic Project of China (2005CCA06100), the Science and Technological Research and Development Project of Hebei Province (07215602D) and the Natural Science Foundation of Hebei Province 032007000010).
文摘The synthesis of methylene diphenyl dimethylcarbamate (4,4'-MDC) from methyl N-phenyl carbonate (MPC) and formaldehyde (HCHO) was conducted in the presence of sulfonic acid-functionalized ionic liquids (ILs) as dual solvent-catalyst. The influences of the kind of anion in the ionic liquids, reaction conditions and the recycle of the ionic liquid on 4,4'-MDC synthesis reaction were investigated. In addition, the acid strength of ILs was de-termined by the Hammett method with UV-visible spectroscopy, and the acid strength-catalytic activity relationship was correlated. The activity estimation results showed that [HSO3-bmim]CF3SO3 was the optimal dual solvent-catalyst. Under the suitable reaction conditions of 70℃, 40 min, molar ratio of nMPC/nHCHO= 10/1 and mass ratio of WILs/WMPC = 4.5/1, the yield of 4,4'-MDC based on HCHO was 89.9 % and the selectivity of 4,4'-MDC with respect to MPC was 74.9%. Besides, [HSO3-bmim]CF3SO3 was reused four times after being purified and no significant loss in the catalytic activity was observed.