期刊文献+
共找到2,480篇文章
< 1 2 124 >
每页显示 20 50 100
An upgraded polymeric composite with interparticle chemical bonding microstructure toward lithium-ion battery separators with enhanced safety and electrochemical performances
1
作者 Qian Zhao Ling Ma +10 位作者 Ye Xu Xiulong Wu Shuai Jiang Qiaotian Zheng Guang Hong Bin He Chen Li Wanglai Cen Wenjun Zhou Yan Meng Dan Xiao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期402-413,共12页
A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly... A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly uniform microstructure was obtained.This polarization caused by barrier penetration was significantly restrained.Due to the Si-F bond between SiC and PVDF-HFP,the structural stability has been obviously enhanced,which could suppress the growth of lithium(Li) dendrite.Furthermore,some 3D reticulated Si nanowires are found on the surface of Li anode,which also greatly inhibit Li dendrites and result in irregular flakes of Li metal.Especially,the shrinkage of 6% SiC/PVDF-HFP at 150℃ is only 5%,which is notably lower than those of PVDF-HFP and Celgard2500.The commercial LiFePO_(4) cell assembled with 6% SiC/PVDF-HFP possesses a specific capacity of 157.8 mA h g^(-1) and coulomb efficiency of 98% at 80℃.In addition,the tensile strength and modulus of 6% SiC/PVDF-HFP could reach 14.6 and 562 MPa,respectively.And a small deformation(1000 nm) and strong deformation recovery are obtained under a high additional load(2.3 mN).Compared with PVDF-HFP and Celgard2500,the symmetric Li cell assembled with 6% SiC/PVDF-HFP has not polarized after 900 cycles due to its excellent mechanical stabilities.This strategy provides a feasible solution for the composite separator of high-safety batteries with a high temperature and impact resistance. 展开更多
关键词 SiC PVDF-HFP Composite separator Thermal stability Mechanical stability High safety battery
下载PDF
Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators
2
作者 王正铎 朱惠钦 +3 位作者 杨丽珍 王新炜 刘忠伟 陈强 《Plasma Science and Technology》 SCIE EI CAS CSCD 2016年第4期424-429,共6页
To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypr... To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries,plasma treatment and plasma enhanced vapor chemical deposition(PECVD)of SiO_x-like are carried out on polypropylene(PP)separators,respectively.Critical parameters for separator properties,such as the thermal shrinkage rate,porosity,wettability,and mechanical strength,are evaluated on the plasma treated PP membranes.O_2 plasma treatment is found to remarkably improve the wettability,porosity and electrolyte uptake.PECVD SiO_x-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity.The electrolyte-philicity of the Si Ox-like coating surface can be tuned by the varying O_2 content in the gas mixture during the deposition.Though still acceptable,the mechanical strength is reduced after PECVD,which is due to the plasma etching. 展开更多
关键词 microporous polypropylene membrane lithium-ion battery plasma treatment and SiO_x coating
下载PDF
A cellulose-based lithium-ion battery separator with regulated ionic transport and high thermal stability for extreme environments
3
作者 Kun-Peng Yang Song Xie +8 位作者 Zi-Meng Han Hao-Cheng Liu Chong-Han Yin Wen-Bin Sun Zhang-Chi Ling Huai-Bin Yang De-Han Li Qing-Fang Guan Shu-Hong Yu 《Nano Research》 SCIE EI 2025年第1期315-322,共8页
Separators play a critical role in lithium-ion batteries.However,the restrictions of thermal stability and inferior electrical performance in commercial polyolefin separators significantly limit their applications und... Separators play a critical role in lithium-ion batteries.However,the restrictions of thermal stability and inferior electrical performance in commercial polyolefin separators significantly limit their applications under harsh conditions.Here,we report a cellulose-assisted self-assembly strategy to construct a cellulose-based separator massively and continuously.With an ultrahigh ionic conductivity in electrolytes of 3.7 mS·cm^(-1) and the ability to regulate ion transport,the obtained separator is a promising alternative for high-performance lithium-ion batteries.In addition,integrated with high thermal stability,the cellulose-based separator endows batteries with high safety at high temperatures,greatly expanding the application scenarios of energy storage devices in extreme environments. 展开更多
关键词 lithium-ion batteries bio-inspired materials battery separators cellulose nanofiber ultrahigh ionic conductivity high safety
原文传递
Nano-alumina@cellulose-coated separators with the reinforcedconcrete-like structure for high-safety lithium-ion batteries
4
作者 Zhihao Yang Li Chen +5 位作者 Jian Xue Miaomiao Su Fangdan Zhang Liangxin Ding Suqing Wang Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期83-93,共11页
Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,... Separators play a critical role in the safety and performance of lithium-ion batteries.However,commercial polyolefin separators are limited by their poor affinity with electrolytes and low melting points.In this work,we constructed a reinforced-concrete-like structure by homogeneously dispersing nano-Al_(2)O_(3) and cellulose on the separators to improve their stability and performance.In this reinforcedconcrete-like structure,the cellulose is a reinforcing mesh,and the nano-Al_(2)O_(3) acts as concrete to support the separator.After constructing the reinforced-concrete-like structure,the separators exhibit good stability even at 200℃(thermal shrinkage of 0.3%),enhanced tensile strain(tensile stress of 133.4 MPa and tensile strains of 62%),and better electrolyte wettability(a contact angle of 6.5°).Combining these advantages,the cells with nano-Al_(2)O_(3)@cellulose-coated separators exhibit stable cycling performance and good rate performance.Therefore,the construction of the reinforced-concretelike structure is a promising technology to promote the application of lithium-ion batteries in extreme environments. 展开更多
关键词 Alumina Nanomaterials lithium-ion batteries Membranes CELLULOSE Reinforced-concrete-like structure
下载PDF
Stabilizing zinc anode using zeolite imidazole framework functionalized separator for durable aqueous zinc-ion batteries 被引量:1
5
作者 Weisong Zhang Xinyan Zhu +8 位作者 Ling Kang Ziyu Peng Jing Zhu Liang Pan Lei Dai Shude Liu Ling Wang Yongguang Liu Zhangxing He 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期23-31,I0003,共10页
Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the for... Aqueous zinc-ion batteries(AZIBs) hold great promise as a viable alternative to lithium-ion batteries owing to their high energy density and environmental friendliness.However,AZIBs are consistently plagued by the formation of zinc dendrites and concurrent side reactions,which significantly diminish their overall service life,In this study,the glass fiber separator(GF) is modified using zeolite imidazole salt framework-8(ZIF-8),enabling the development of efficient AZIBs.ZIF-8,which is abundant in nitrogen content,efficiently regulates the desolvation of [Zn(H_(2)O)_(6)]^(2+) to inhibit hydrogen production.Moreover,it possesses abundant nanochannels that facilitate the uniform deposition of Zn~(2+) via a localized action,thereby hindering the formation of dendrites.The insulating properties of ZIF-8 help prevent Zn^(2+) and water from trapping electron reduction at the layer surface,which reduces corrosion of the zinc anode.Consequently,ZIF-8-GF achieves the even transport of Zn^(2+) and regulates the homogeneous deposition along the Zn(002) crystal surface,thus significantly enhancing the electrochemical performance of the AZIBs,In particular,the Zn|Zn symmetric cell with the ZIF-8-GF separator delivers a stable cycle life at0.5 mA cm^(-2) of 2300 h.The Zn|ZIF-8-GF|MnO_(2) cell exhibits reduced voltage polarization while maintaining a capacity retention rate(93.4%) after 1200 cycles at 1.2 A g^(-1) The unique design of the modified diaphragm provides a new approach to realizing high-performance AZIBs. 展开更多
关键词 Aqueous zinc-ion batteries separators modifications ZIF-8 Zn deposition Dendrite-free
下载PDF
Design of Voltage Equalization Circuit and Control Method for Lithium-ion Battery Packs
6
作者 Qi Wang Lantian Ge +4 位作者 Tianru Xie Yibo Huang Yandong Gu Tao Zhu Xuehua Gao 《Energy Engineering》 2025年第2期733-746,共14页
The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper p... The active equalization of lithium-ion batteries involves transferring energy from high-voltage cells to low-voltage cells,ensuring consistent voltage levels across the battery pack and maintaining safety.This paper presents a voltage balancing circuit and control method.First,a single capacitor method is used to design the circuit topology for energy transfer.Next,real-time voltage detection and control are employed to balance energy between cells.Finally,simulation and experimental results demonstrate the effectiveness of the proposed method,achieving balanced voltages of 3.97 V from initial voltages of 4.10,3.97,and 3.90 V.The proposed circuit is simple,reliable,and effectively prevents overcharge and overdischarge. 展开更多
关键词 lithium-ion battery voltage balancing control single-capacitor method
下载PDF
A review of electrospun separators for lithium-based batteries: Progress and application prospects
7
作者 Xiangru Sun Ying Zhou +6 位作者 Dejun Li Kai Zhao Liqun Wang Peiran Tan Hongyang Dong Yueming Wang Ji Liang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期109-155,共47页
Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in... Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries. 展开更多
关键词 ELECTROSPINNING Li-metal batteries Li-S batteries lithium-ion batteries separator
下载PDF
Electrospraying Si/SiO_(x)/C and Sn/C nanosphere arrays on carbon cloth for high-performance flexible lithium-ion batteries
8
作者 Di Chen Rui Li +1 位作者 Chunxue Liu Kai Jiang 《Journal of Semiconductors》 2025年第1期234-243,共10页
Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method inclu... Exploring electrode materials with larger capacity,higher power density and longer cycle life was critical for developing advanced flexible lithium-ion batteries(LIBs).Herein,we used a controlled two-step method including electrospraying followed with calcination treatment by CVD furnace to design novel electrodes of Si/Si_(x)/C and Sn/C microrods array consisting of nanospheres on flexible carbon cloth substrate(denoted as Si/Si_(x)/C@CC,Sn/C@CC).Microrods composed of cumulated nanospheres(the diameter was approximately 120 nm)had a mean diameter of approximately 1.5μm and a length of around 4.0μm,distributing uniformly along the entire woven carbon fibers.Both of Si/Si/Si_(x)/C@CC and Sn/C@CC products were synthesized as binder-free anodes for Li-ion battery with the features of high reversible capacity and excellent cycling.Especially Si/Six/C electrode exhibited high specific capacity of about 1750 mA∙h∙g^(−1)at 0.5 A∙g^(−1)and excellent cycling ability even after 1050 cycles with a capacity of 1388 mA∙h∙g^(−1).Highly flexible Si/Si_(x)/C@CC//LiCoO_(2)batteries based on liquid and solid electrolytes were also fabricated,exhibiting high flexibility,excellent electrical stability and potential applications in flexible wearable electronics. 展开更多
关键词 ELECTROSPRAYING Si/SiO_(x)/C Sn/C lithium-ion batteries
下载PDF
Amphoteric Supramolecular Nanofiber Separator for High-Performance Sodium-Ion Batteries
9
作者 Yuping Zhang Hongzhi Zheng +7 位作者 Xing Tong Hao Zhuo Wu Yang Yuling Chen Ge Shi Zehong Chen Linxin Zhong Xinwen Peng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期114-121,共8页
The separator is an essential component of sodium-ion batteries(SIBs)to determine their electrochemical performances.However,the separator with high mechanical strength,good electrolyte wettability and excellent elect... The separator is an essential component of sodium-ion batteries(SIBs)to determine their electrochemical performances.However,the separator with high mechanical strength,good electrolyte wettability and excellent electrochemical performance remains an open challenge.Herein,a new separator consisting of amphoteric nanofibers with abundant functional groups was fabricated through supramolecular assembly of natural polymers for SIB.The uniform nanoporous structure,remarkable mechanical properties and abundant functional groups(e.g.-COOH,-NH_(2)and-OH)endow the separator with lower dissolution activation energy and higher ion migration numbers.These metrics enable the separator to lower the barrier for desolvation of Na^(+),accelerate the migration of Na^(+),and generate more stable solid electrolyte interphase(SEI)and cathode electrolyte interphase(CEI).The battery assembled with the amphoteric nanofiber separator shows higher specific capacity and better stability than that assembled with glass fiber(GF)separator. 展开更多
关键词 AMPHOTERIC NANOFIBER SELF-ASSEMBLY separator sodium-ion batteries
下载PDF
Converting an O-vacancy-rich oxide into a multifunctional separator modifier for long-lifespan lithium metal batteries
10
作者 Juntao Si Xiaoying Li +3 位作者 Yixuan Li Kuo Cao Yiran Zhu Chunhua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期371-378,I0007,共9页
The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the format... The lithium metal anode is hailed as the desired "holy grail" for the forthcoming generation of highenergy-density batteries,given its astounding theoretical capacity and low potential.Nonetheless,the formation and growth of dendrites seriously compromise battery life and safety.Herein,an yttriastabilized bismuth oxide(YSB) layer is fabricated on the polypropylene(PP) separator,where YSB reacts with Li anode in-situ in the cell to form a multi-component composite interlayer consisting of Li_(3)Bi,Li_(2)O,and Y_(2)O_(3).The interlayer can function not only as a redistributor to regulate Li^(+) distribution but also as an anion adsorber to increase the Li^(+) transference number from 0.37 to 0.79 for suppressing dendrite nucleation and growth.Consequently,compared with the cell with a baseline separator,those with modified separators exhibit prolonged lifespan in both Li/Li symmetrical cells and Li/Cu half-cells.Notably,the full cells coupled with ultrahigh-loading LiFePO_(4) display an excellent cycling performance of 1700 cycles with a high capacity retention of ~80% at 1 C,exhibiting great potential for practical applications.This work provides a feasible and effective new strategy for separator modification towards building a much-anticipated dendrite-free Li anode and realizing long-lifespan lithium metal batteries. 展开更多
关键词 Lithium metal battery separator Dendrite-free Multifunctional interlayer Conversion-alloying reaction
下载PDF
Cooperation of metal-organic coordination complex separator and wide-temperature-range electrolyte enables safe and high-performance lithium batteries
11
作者 You Gao Qing-Song Liu +3 位作者 Guo-Rui Zhu Gang Wu Xiu-Li Wang Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第12期692-702,共11页
With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion... With the increase of people’s demand,it is extremely desired for developing high-safety,widetemperature-range and high-energy-density lithium batteries,but huge challenges are remained due to shrinkage and combustion of commonly used polyolefin separators at high temperatures,as well as narrow usable temperature range and high flammability of conventionally commercialized liquid electrolytes.In this work,we report a multifunctional separator mainly consisting of Zn^(2+)-phytate coordination complex nanoparticles and bacterial cellulose nanofibers,named the BZP separator,which possesses high porosity,excellent thermotolerance,good flame retardancy,abilities of anion binding and Ni^(2+)capturing.Through cooperating with the fluoride-free wide-temperature-range electrolyte,Li//LiFePO_(4) cells not only deliver discharge capacities of 110.39 mA h g^(-1)and 113.25 mA h g^(-1)after 2200 cycles (2 C) and1600 cycles (5 C) at 25℃,with capacity retentions of 76.59%and 86.09%,respectively,but also exhibit excellent cycling performance at 80℃ and-40℃.Significantly,the Li//NCM811 cell with a loading of7.8 mg cm^(-2)delivers a discharge capacity of 146.64 mA h g^(-1)after 200 cycles at 0.5 C,with a capacity retention of 89.03%.In addition,pouch cells can work at 120℃ and have low flammability. 展开更多
关键词 Metal-organic coordination complex separator ELECTROLYTE Thermal and fire safety Lithium batteries
下载PDF
Preparation of Polymer Separators Combined with Metal-organic Framework Materials@Carbon Materials and Their Application in the Lithium Battery
12
作者 YANG Qing GU Jiawei +1 位作者 HUANG Yinuo WU Shuaibin 《材料科学与工程学报》 CSCD 北大核心 2024年第6期951-960,共10页
There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An importa... There are some inherent defects for the polyolefin based lithium battery separator,such as,poor thermal stability,poor electrolyte wettability and low porosity,which limit the development of lithium battery.An important way to improve the performance of lithium battery is to improve the separator.Here,three novel separators combined with metal-organic framework materials(MOFs)and carbon materials were prepared by using the in situ growth method and the adsorption combination method simultaneously.The result showed that compared with the polypropylene separator,the porosity and electrolyte wettability were significantly improved in view of these novel polypropylene separators combined with MOFs and carbon materials.Meanwhile,the electrochemical performance of lithium battery equipped with the polypropylene separator combined with MOFs materials and carbon materials was also improved.The result showed that lithium batteries equipped with polypropylene separator combined with MOFs and carbon materials had higher capacity in the first charge and discharge cycle and better electrochemical kinetic reaction processes. 展开更多
关键词 Metal-organic frameworks Carbon material separator Lithium battery
下载PDF
S-doped mesoporous graphene modified separator for high performance lithium-sulfur batteries
13
作者 Xinlong Ma Chenggen Xu +8 位作者 Yin Yang Dong Sun Kai Zhao Changbo Lu Peng Jin Yiting Chong Sirawit Pruksawan Zhihua Xiao Fuke Wang 《Materials Reports(Energy)》 EI 2024年第3期60-68,共9页
Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,t... Due to their low cost,environmental friendliness and high energy density,the lithium-sulfur batteries(LSB)have been regarded as a promising alternative for the next generation of rechargeable battery systems.However,the practical application of LSB is seriously hampered by its short cycle life and high self-charge owing to the apparent shuttle effect of soluble lithium polysulfides.Using MgSO_(4)@MgO composite as both template and dopant,template-guided S-doped mesoporous graphene(SMG)is prepared via the fluidized-bed chemical vapor deposition method.As the polypropylene(PP)modifier,SMG with high specific surface area,abundant mesoporous structures and moderate S doping content offers a wealth of physical and chemical adsorptive sites and reduced interfacial contact resistance,thereby restraining the serious shuttle effects of lithium polysulfides.Consequently,the LSB configured with mesoporous graphene(MG)as S host material and SMG as a separator modifier exhibits an enhanced electrochemical performance with a high average capacity of 955.64 mA h g^(-1) at 1C and a small capacity decay rate of 0.109%per cycle.Additionally,the density functional theory(DFT)calculation models have been rationally constructed and demonstrated that the doped S atoms in SMG possess higher binding energy to lithium polysulfides than that in MG,indicating that the SMG/PP separator can effectively capture soluble lithium polysulfides via chemical binding forces.This work would provide valuable insight into developing a versatile carbon-based separator modifier for LSB. 展开更多
关键词 Fluidized-bed chemical vapor deposition Mesoporous graphene S doping separator modification Lithium-sulfur battery
下载PDF
Rational design on separators and liquid electrolytes for safer lithium-ion batteries 被引量:18
14
作者 Mengqi Yuan Kai Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第4期58-70,共13页
As the energy density of lithium-ion batteries (LIBs) continues to increase,their safety has become a great concern for further practical large-scale applications.One of the ultimate solution of the safety issue is to... As the energy density of lithium-ion batteries (LIBs) continues to increase,their safety has become a great concern for further practical large-scale applications.One of the ultimate solution of the safety issue is to develop intrinsically safe battery components,where the battery separators and liquid electrolytes are critical for the battery thermal runaway process.In this review,we summarize recent progress in the rational materials design on battery separators and liquid electrolyte towards the goal of improving the safety of LIBs.Also,some strategies for further improving safety of LIBs are also briefly outlooked. 展开更多
关键词 lithium-ion battery battery safety ELECTROLYTE separator Energy storage materials
下载PDF
A polyethylene microsphere-coated separator with rapid thermal shutdown function for lithium-ion batteries 被引量:5
15
作者 Chongrong Zhang Hui Li +4 位作者 Shixuan Wang Yuliang Cao Hanxi Yang Xinping Ai Faping Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第5期33-40,共8页
Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective ap... Thermal runaway is the main factor contributing to the unsafe behaviors of lithium-ion batteries(LIBs)in practical applications.The application of separators for the thermal shutdown has been proven as an effective approach to protecting LIBs from thermal runaway.In this work,we developed a thermal shutdown separator by coating a thin layer of low-density polyethylene microspheres(PM)onto a commercial porous polypropylene(PP)membrane and investigated the thermal response behaviors of the as-prepared PM/PP separator in LIBs.The structural and thermal analysis results revealed that the coated PM layer had a porous structure,which facilitated the occurrence of normal charge-discharge reactions at ambient temperature,although it could melt completely and fuse together within very short time periods:3 s at 110℃and 1 s at 120℃,to block off the pores of the PP substrate,thereby cutting off the ion transportation between the electrodes and interrupting the battery reaction.Consequently,the PM/PP separator exhibits very similar electrochemical performance to that of a conventional separator at ambient temperature.However,it performs a rapid thermal shutdown at an elevated temperature of^110℃,thus controlling the temperature rise and maintaining the cell in a safe status.Due to its synthetic simplicity and low cost,this separator shows promise for possible application in building safe LIBs. 展开更多
关键词 THERMAL SHUTDOWN separator Safety lithium-ion battery
下载PDF
Safer Lithium-Ion Batteries from the Separator Aspect:Development and Future Perspectives 被引量:12
16
作者 Zhifang Liu Yingjun Jiang +5 位作者 Qiaomei Hu Songtao Guo Le Yu Qi Li Qing Liu Xianluo Hu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2021年第3期336-362,共27页
With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Develop... With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Developing component materials(e.g.,cathode,anode,electrolyte,and separator)with high thermal stability and intrinsic safety is the ultimate solution to improve the safety of LIBs.Separators are crucial components that do not directly participate in electrochemical reactions during charging/discharging processes,but play a vital role in determining the electrochemical performance and safety of LIBs.In this review,the recent advances on traditional separators modified with ceramic materials and multifunctional separators ranging from the prevention of the thermal runaway to the flame retardant are summarized.The component–structure–performance relationship of separators and their effect on the comprehensive performance of LIBs are discussed in detail.Furthermore,the research challenges and future directions toward the advancement in separators for high-safety LIBs are also proposed. 展开更多
关键词 energy storage high safety lithium-ion batteries separatorS thermal stability
下载PDF
Comparative study of different membranes as separators for rechargeable lithium-ion batteries 被引量:4
17
作者 Hong-yan Guan Fang Lian +3 位作者 Yan Ren Yan Wen Xiao-rong Pan Jia-lin Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第6期598-603,共6页
Membranes of polypropylene (PP), PP coated with nano-A1203, PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/P... Membranes of polypropylene (PP), PP coated with nano-A1203, PP electrospun with polyvinylidene fluoride- hexafluoropropylene (PVdF-HFP), and trilayer laminates of polypropylene-polyethylene-polypropylene (PP/PE/PP) were comparatively studied. Their physical properties were characterized by means of thermal shrinkage test, liquid electrolyte uptake, and field emission scanning electron microscopy (FESEM). Results show that, for the different membranes as PP, PP coated with nanowA1203, PP electrospun with PVdF-HFP, and PP/PE/PP, the thermal shrinkages are 14%, 6%, 12.6%, and 13.3%, while the liquid electrolyte uptakes are 110%, 150%, 217%, and 129%, respectively. In addition, the effects on the performance of lithium-ion batteries (LiFePO4 and LiNil/3Col/3Mn1/302 as the cathode material) were investigated by AC impedance and galvanostatic charge/discharge test. It is found that PP coated with A1203 and PP electrospun with PVdF-HFP can effectively increase the wettability between the cathode material and liquid electrolyte, and therefore reduce the charge transfer resistance, which improves the capacity retention and battery performance. 展开更多
关键词 lithium-ion batteries membranes separatorS thermal stability electrochemical properties
下载PDF
A phase inversion based sponge-like polysulfonamide/SiO_2 composite separator for high performance lithium-ion batteries 被引量:8
18
作者 Xiao Wang Gaojie Xu +5 位作者 Qingfu Wang Chenglong Lu Chengzhong Zong Jianjun Zhang Liping Yue Guanglei Cui 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第6期1292-1299,共8页
In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Comp... In this work,a sponge-like polysulfonamide(PSA)/SiO_2 composite membrane is unprecedentedly prepared by the phase inversion method,and successfully demonstrated as a novel separator of lithium-ion batteries(LIBs).Compared to the commercial polypropylene(PP) separator,the sponge-like PSA/SiO_2 composite possesses better physical and electrochemical properties,such as higher porosity,ionic conductivity,thermal stability and flame retarding ability.The LiCoO_2/Li half-cells using the sponge-like composite separator demonstrate superior rate capability and cyclability over those using the commercial PP separator.Moreover,the sponge-like composite separator can ensure the normal operation of LiCoO_2/Li half-cell at an extremely high temperature of 90 °C,while the commercial PP separator cannot.All these encouraging results suggest that this phase inversion based sponge-like PSA/SiO_2 composite separator is really a promising separator for high performance LIBs. 展开更多
关键词 Polysulfonamide/SiO2 composite Phase inversion method separator Performance enhancement lithium-ion battery
下载PDF
Radiation graft of acrylamide onto polyethylene separators for lithium-ion batteries 被引量:2
19
作者 Xiao-Li Miao Ji-Hao Li +3 位作者 Qun Xiang Jia-Qiang Xu Lin-Fan Li Jing-Ye Li 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第6期108-114,共7页
To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separa... To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separators(denoted as PE-g-PAAm) was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Properties of the pristine PE and PE-g-PAAm were tested by scanning electron microscope,liquid electrolyte uptake and lithium-ion conductivity.Electrochemical performances of the grafted PE separators(up to 0.76 × 10^(-3) S/cm of ionic conductivity at room temperature) were much better than pristine PE,and performance of the battery with the grafted separator behaved better than with the virgin PE separator,under the same condition(assembled in Ar-filled glove box). 展开更多
关键词 lithium-ion battery POLYETHYLENE ACRYLAMIDE Irradiation GRAFT separator
下载PDF
Fiber swelling to improve cycle performance of paper-based separator for lithium-ion batteries application 被引量:2
20
作者 Zhenghao Li Wei Wang +3 位作者 Xinmiao Liang Jianlin Wang Yonglin Xu Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期92-100,共9页
It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swell... It is well established that paper-based separators display short-circuit risk in lithium-ion batteries due to their intrinsic micron-sized pores.In this research,we have adjusted pore structure of paper by fiber swelling in liquid electrolyte.Specifically,the paper-based separator is prepared by propionylated sisal fibers through a wet papermaking process.Scanning electron microscope(SEM)and multi-range X-ray nano-computed tomography(CT)images display strong swelling of modified fibers after electrolyte absorption,which can effectively decrease the pore size of separator.Due to the high electrolyte uptake(817 wt%),paper-based separator exhibits ionic conductivity of 2.93 mS cm^(-1).^(7)Li solid-state NMR spectroscopy and Gaussian simulation reveal that the formation of local high Li^(+)ion concentration in the separator and its low absorption energy with Li^(+) ion(62.2 kcal mol^(-1))is conducive to the ionic transportation.In particular,the assembled Li/separator/LiFePO_(4) cell displays wide electrochemical stability window(5.2 V)and excellent cycle performance(capacity retention of 96.6%after 100 cycles at 0.5C)due to the reduced side reactions as well as enhanced electrolyte absorption and retention capacity by propionylation.Our proposed strategy will provide a novel perspective to design high-performance biobased separators to boost the development of clean and sustainable energy economy. 展开更多
关键词 Paper-based separators lithium-ion batteries Electrochemical properties Propionylation
下载PDF
上一页 1 2 124 下一页 到第
使用帮助 返回顶部