The Huangshan granitic intrusion in Anhui province,SE China,is tectonically located at the southeastern boundary of the Yangtze Block.Based on the contact relation and the petrography,the Huangshan granitic intrusion ...The Huangshan granitic intrusion in Anhui province,SE China,is tectonically located at the southeastern boundary of the Yangtze Block.Based on the contact relation and the petrography,the Huangshan granitic intrusion can be divided into four stages,from early to late,medium-grained monzogranite,coarse-grained porphyric granite,fine-medium grained porphyric granite,and finecoarse grained granite.All rocks from the Huangshan granitic intrusion display similar petrological and geochemical characteristics,i.e.relatively high SiO_2(〉75%) and alkali(7.85%-8.59%),low CaO (〈1%),high Fe-number(FeO_T/(MgO+FeO_T) = 0.93-0.97) and A/CNK(atomic Al/(Ca+Na+K))=1.04- 1.19.They are also enriched in rare earth elements(REE,except for Eu,with a total REE contents ranging from 116 ppm to 421 ppm),high strength field elements such as Zr,Hf,Nb,but depleted in Ba,Sr and Ni.The 10 000×Ga/Al ratios are higher than 2.6,which are consistent with the A-type granitoids.Based on the classification diagrams proposed by Eby,the Huangshan granite can be classified into the A2 group,which is usually believed to be formed under an extensional tectonic setting.Their Nd isotopic compositions suggest that the primary magmas of the Huangshan granite are predominantly derived from the Proterozoic andesitic rocks in the region,and this conclusion is also supported by REE modeling.The systemic investigations on the geochemistry of the Huangshan granitic intrusion can provide significant implications for the understanding of the petrogenesis and the geodynamic regime of southeastern China during the Late-Mesozoic.展开更多
The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic ...The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The ^40Ar^39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungstentin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma, probably is closely related to asthenospheric upwelling and crustmantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.展开更多
Oceanic intraplate volcanoes with linear age progressions are usually accepted to be derived from melting of an upwelling mantle plume.Several seamount groups in NW Pacific,however,show complex age-distance relationsh...Oceanic intraplate volcanoes with linear age progressions are usually accepted to be derived from melting of an upwelling mantle plume.Several seamount groups in NW Pacific,however,show complex age-distance relationships that are difficult to explain using the classic“mantle plume hypothesis”,and thus their origins are controversial.In this study,we present ^(40)Ar-^(39)Ar age,geochemical,and Sr-Nd-Pb-Hf isotopic data of lavas from Hemler,Vlinder,and Il’ichev seamounts in NW Pacific,to elucidate their petrogenesis and geodynamic process.The lavas from Hemler,Vlinder,and Il’ichev seamounts are classified as alkali basalt,basanite/nephelinite,and trachyte.Lavas with Mg O>8 wt.%exhibit high contents of CaO,FeO^(T),and TiO_(2),similar to the composition of melts formed from reaction between carbonated eclogite-derived melts and fertile peridotite.These lavas have elevated Zr/Hf ratios(40.6-45.2)and negative Zr and Hf anomalies,indicating the presence of a carbonate component in the mantle source.They are enriched in incompatible trace elements and have enriched mantle 1(EM1)-like SrNd-Pb-Hf isotopic compositions.The isotopic compositions of Vlinder,Il’ichev basanite,and Hemler lavas in this study are similar to the Rarotonga hotspot.Although occurring at the same seamount,the Il’ichev alkali basalts display more depleted SrNd-Hf isotopic compositions compared to Il’ichev basanite.According to plate tectonic reconstruction results,the ages of Hemler(100.1 Ma),Vlinder pre-(100.2 Ma)and post-shield(87.5 Ma),and Il’ichev(56.4 Ma)lavas clearly deviate from the Macdonald,Arago,Rarotonga,and Samoa hotspot tracks,indicating that they cannot directly originate from mantle plumes.We propose that in the mid-Cretaceous,when the Pacific plate passed over Rarotonga hotspot,melting of Rarotonga plume formed the Vlinder(main-shield stage),Pako,and Ioah seamounts.The Rarotonga(and possibly Samoa)plume materials would have been dispersed into the surrounding asthenosphere by mantle convection.These diffuse plume materials would undergo decompression melting beneath lithosphere fractures that are widely distributed in the Magellan area,generating non-hotspot related Hemler and pre-and post-shield Vlinder lavas.The Il’ichev alkali basalts and basanite probably result from lithospheric fracture-induced melting of heterogeneous enriched components randomly distributed in the asthenosphere.展开更多
The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton(NCC), is a cumulative complex emplaced along a giant fracture that penetrates dee...The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton(NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H_2O and CO_2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H_2O and CO_2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.展开更多
The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric...The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.展开更多
基金supported by the Application Programme for UNESCO Network of Geoparkssupported by Huangshan Management Committee,111 Project(B07011)and PCSIRT.
文摘The Huangshan granitic intrusion in Anhui province,SE China,is tectonically located at the southeastern boundary of the Yangtze Block.Based on the contact relation and the petrography,the Huangshan granitic intrusion can be divided into four stages,from early to late,medium-grained monzogranite,coarse-grained porphyric granite,fine-medium grained porphyric granite,and finecoarse grained granite.All rocks from the Huangshan granitic intrusion display similar petrological and geochemical characteristics,i.e.relatively high SiO_2(〉75%) and alkali(7.85%-8.59%),low CaO (〈1%),high Fe-number(FeO_T/(MgO+FeO_T) = 0.93-0.97) and A/CNK(atomic Al/(Ca+Na+K))=1.04- 1.19.They are also enriched in rare earth elements(REE,except for Eu,with a total REE contents ranging from 116 ppm to 421 ppm),high strength field elements such as Zr,Hf,Nb,but depleted in Ba,Sr and Ni.The 10 000×Ga/Al ratios are higher than 2.6,which are consistent with the A-type granitoids.Based on the classification diagrams proposed by Eby,the Huangshan granite can be classified into the A2 group,which is usually believed to be formed under an extensional tectonic setting.Their Nd isotopic compositions suggest that the primary magmas of the Huangshan granite are predominantly derived from the Proterozoic andesitic rocks in the region,and this conclusion is also supported by REE modeling.The systemic investigations on the geochemistry of the Huangshan granitic intrusion can provide significant implications for the understanding of the petrogenesis and the geodynamic regime of southeastern China during the Late-Mesozoic.
基金the Innovative Project of the Chinese Academy of Sciences (Grant No. KZCX3-SW-125) National Natural Science Foundation of China (Grant No. 40472053 , No. 40673021).
文摘The Xianghualing Sn-polymetallic orefield in Hunan Province, southern China, is a largesize tin orefield. Although numerous studies have been undertaken on this orefield, its genesis, mineralization age, and tectonic setting are still controversial, mainly because of the lack of reliable geochronological data on tin mineralization. The ^40Ar^39Ar stepwise heating dating method was first employed on muscovite from different deposits in this orefield. The muscovite sample from the Xianghualing Sn-polymetallic deposit defines a plateau age of 154.4±1.1 Ma and an isochron age of 151.9±3.0 Ma; muscovite from the Xianghuapu W-polymetallic deposit yields a plateau age of 161.3±1.1 Ma and an isochron age of 160.0±3.2 Ma; muscovite from the Jianfengling greisen-type Sn-polymetallic deposit gives a plateau age of 158.7±1.2 Ma and an isochron age of 160.3±3.2 Ma. The tungsten-tin mineralization ages in the Xianghualing area are therefore restricted within 150-160 Ma. The tungstentin mineralization in Xianghualing occurred at the same time as the regional tin-tungsten mineralization including the Furong tin orefield, Shizhuyuan tungsten-tin polymetallic deposit and Yaogangxian tungsten-polymetallic deposit. Thus, the large-scale tungsten-tin metallogenesis in South China occurring at 160-150 Ma, probably is closely related to asthenospheric upwelling and crustmantle interaction under a geodynamic setting of crustal extension and lithosphere thinning during the transformation of tectonic regimes during the Mid-Late Jurassic.
基金supported by the Basic Scientific Fund for National Public Research Institutes of China(Grant No.2023S02)the National Natural Science Foundation of China(Grant Nos.42076076&42376075)the Taishan Scholar Program of Shandong Province。
文摘Oceanic intraplate volcanoes with linear age progressions are usually accepted to be derived from melting of an upwelling mantle plume.Several seamount groups in NW Pacific,however,show complex age-distance relationships that are difficult to explain using the classic“mantle plume hypothesis”,and thus their origins are controversial.In this study,we present ^(40)Ar-^(39)Ar age,geochemical,and Sr-Nd-Pb-Hf isotopic data of lavas from Hemler,Vlinder,and Il’ichev seamounts in NW Pacific,to elucidate their petrogenesis and geodynamic process.The lavas from Hemler,Vlinder,and Il’ichev seamounts are classified as alkali basalt,basanite/nephelinite,and trachyte.Lavas with Mg O>8 wt.%exhibit high contents of CaO,FeO^(T),and TiO_(2),similar to the composition of melts formed from reaction between carbonated eclogite-derived melts and fertile peridotite.These lavas have elevated Zr/Hf ratios(40.6-45.2)and negative Zr and Hf anomalies,indicating the presence of a carbonate component in the mantle source.They are enriched in incompatible trace elements and have enriched mantle 1(EM1)-like SrNd-Pb-Hf isotopic compositions.The isotopic compositions of Vlinder,Il’ichev basanite,and Hemler lavas in this study are similar to the Rarotonga hotspot.Although occurring at the same seamount,the Il’ichev alkali basalts display more depleted SrNd-Hf isotopic compositions compared to Il’ichev basanite.According to plate tectonic reconstruction results,the ages of Hemler(100.1 Ma),Vlinder pre-(100.2 Ma)and post-shield(87.5 Ma),and Il’ichev(56.4 Ma)lavas clearly deviate from the Macdonald,Arago,Rarotonga,and Samoa hotspot tracks,indicating that they cannot directly originate from mantle plumes.We propose that in the mid-Cretaceous,when the Pacific plate passed over Rarotonga hotspot,melting of Rarotonga plume formed the Vlinder(main-shield stage),Pako,and Ioah seamounts.The Rarotonga(and possibly Samoa)plume materials would have been dispersed into the surrounding asthenosphere by mantle convection.These diffuse plume materials would undergo decompression melting beneath lithosphere fractures that are widely distributed in the Magellan area,generating non-hotspot related Hemler and pre-and post-shield Vlinder lavas.The Il’ichev alkali basalts and basanite probably result from lithospheric fracture-induced melting of heterogeneous enriched components randomly distributed in the asthenosphere.
基金the National Basic Research Program of China (Grant No. 2013CB429801)National Natural Science Foundation of China (Grant No. 41172196)
文摘The Early Permian mafic-ultramafic concentrically zoned Gaositai intrusion at Chengde, on the northern margin of the North China Craton(NCC), is a cumulative complex emplaced along a giant fracture that penetrates deeply into the continental lithosphere. Melt inclusions are present in chromite crystals from the inner dunite and chromitite zones of the Gaositai complex. The melt inclusions have experienced post-trap crystallization and resulted in multiple mineral phases, including melilite, garnet, phlogopite, magnesite and apatite, which can indicate the liquidus minerals of the primitive magma. The characteristics of the melilite+melanite+clinopyxene assemblage indicate that the primary parental magma was highly undersaturated and derived from an alkali-rich mantle source. The crystallization of phlogopite, magnesite and apatite suggests a primary magma rich in K, H_2O and CO_2. When compared with experimental data, the primary magma of the Gaositai intrusion is concordant with a kamafugite magma originating from partial melting of enriched mantle with H_2O and CO_2 at pressures greater than 2.7 GPa. This magmatic process would have been related to extensional thinning of the continental lithosphere. The Gaositai primary magmas have high Nb/La ratios, which are similar to those of ocean island basalts, but different from arc-related magmas. This suggests that the northern margin of the NCC was not an active continental margin of the Paleo-Asian Ocean subduction zone during the Early Permian: an extensional tectonic setting during the emplacement of the Gaositai intrusion is more likely.
基金supported by Sinopec Marine Forward-looking Projects (Grant No. YPH08101)
文摘The Sichuan Basin, located in the western margin of Yangtze Plate, is one of the important oil-gas-bearing basins in China. During the Early Permian-Middle Triassic, the Sichuan Basin experienced regional lithospheric extension and Emeishan basalt activities, both of which influenced the basin development and thermal evolution. Here we simulated the thermal effects of lithospheric extension and the Emeishan mantle plume based on different geodynamical models. Modeling results indicated that the lithospheric temperature together with the basement heat flow was generally increasing with time due to extension. As the stretching factor was relatively small, the thinning of lithosphere, and consequently the thermal disturbance, was not great. The lithospheric extension yielded about 20% increase of the basement heat flow, with maximum value of 60?62 mW m?2 in the Early Triassic. Mantle plume model shows that the thermal evolution of the inner zone above the plume head was influenced greatly by plume activity. But the outer zone and its outside area where the Sichuan Basin is located were affected only slightly. The basalts that had erupted in the southwestern basin might disturb the basin temperature significantly, although shortly and locally. Generally, the thermal history of the Sichuan basin during the Early Permian-Middle Triassic was controlled by the lithospheric extension, but locally it superimposed thermal effects of basalt activities in its southwestern area.