期刊文献+
共找到4,483篇文章
< 1 2 225 >
每页显示 20 50 100
Temporal changes in mixing effects on litter decay and nitrogen release in a boreal riparian forest in northeastern China
1
作者 Simin Wang Bo Liu +2 位作者 Rui Li Xiaoxin Sun Rong Mao 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期33-41,共9页
In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs... In riparian forests,litter decay provides essential energy and nutrients for both terrestrial and fluvial ecosystems.Litter mixing effects(LMEs)are crucial in regulating litter decay and nutrient dynamics,yet how LMEs change over time is unclear in riparian forests.In this study,leaf litter of three common species(Alnus sibirica Fisch.ex Turcz,Betula platyphylla Sukaczev,and Betula fruticosa Pall.)were mixed in an equal mass ratio and LMEs were measured for mass and nitrogen(N)remaining in whole litter mixtures over a 3-year period in a boreal riparian forest,northeastern China.LMEs were also assessed for component litter mass and N remaining by separating litter mixtures by species.During the decay of litter mixtures,antagonistic effects on mass and N remaining were dominant after one and two years of decay,whereas only additive effects were observed after three years.LMEs correlated negatively with functional diversity after the first and two years of decay but disappeared after three years.When sorting litter mixtures by species,non-additive LMEs on mass and N remaining decreased over incubation time.Moreover,non-additive LMEs were more frequent for litter of both B.platyphylla and B.fruticosa with lower N concentration than for A.sibirica litter with higher N concentration.These results indicate that incubation time is a key determinant of litter mixing effects during decay and highlight that late-stage litter mixture decay may be predicted from single litter decay dynamics in boreal riparian forests. 展开更多
关键词 BIODIVERSITY litter quality litter mixtures Synergistic effects Functional diversity
下载PDF
Subtropical forest macro-decomposers rapidly transfer litter carbon and nitrogen into soil mineral-associated organic matter
2
作者 Guoxiang Niu Tao Liu +4 位作者 Zhen Zhao Xuebing Zhang Huiling Guan Xiaoxiang He Xiankai Lu 《Forest Ecosystems》 SCIE CSCD 2024年第2期131-139,共9页
Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SO... Background:Forest soils in tropical and subtropical areas store a significant amount of carbon.Recent framework to assess soil organic matter(SOM)dynamics under evolving global conditions suggest that dividing bulk SOM into particulate and mineral-associated organic matter(POM vs.MAOM)is a promising method for identifying how SOM contributes to reducing global warming.Soil macrofauna,earthworms,and millipedes have been found to play an important role in facilitating SOM processes.However,how these two co-existing macrofaunae impac the litter decomposition process and directly impact the formation of POM and MAOM remains unclear.Methods:Here,we set up a microcosm experiment,which consisted of 20 microcosms with four treatments earthworm and litter addition(E),millipedes and litter addition(M),earthworm,millipedes,and litter addition(E+M),and control(only litter addition)in five replicates.The soil and litter were sterilized prior to beginning the incubation experiment to remove any existing microbes.After incubating the samples for 42 days,the litte properties(mass,C,and N contents),soil physicochemical properties,as well as the C and N contents,and POM and MAOM^(13)C abundance in the 0–5 and 5–10 cm soil layers were measured.Finally,the relative influences o soil physicochemical and microbial properties on the distribution of C and N in the soil fractions were analyzed Results:The litter mass,C,and N associated with all four treatments significantly decreased after incubation especially under treatment E+M(litter mass:-58.8%,litter C:-57.0%,litter N:-75.1%,respectively),while earthworm biomass significantly decreased under treatment E.Earthworm or millipede addition alone showed no significant effects on the organic carbon(OC)and total nitrogen(TN)content in the POM fraction,but join addition of both significantly increased OC and TN regardless of soil depth.Importantly,all three macrofauna treatments increased the OC and TN content and decreased the^(13)C abundance in the MAOM fraction.More than65%of the total variations in the distribution of OC and TN throughout the two fractions can be explained by a combination of soil physicochemical and microbial properties.Changes in the OC distribution in the 0–5 cm soi layer are likely due to a decrease in soil pH and an increase in arbuscular mycorrhizal fungi(AMF),while those in the 5–10 cm layer are probably caused by increases in soil exchangeable Ca and Mg,in addition to fungi and gram-negative(GN)bacteria.The observed TN distribution changes in the 0–5 cm soil likely resulted from a decrease in soil pH and increases in AMF,GN,and gram-negative(GP)bacteria,while TN distribution changes in the 5–10 cm soil could be explained by increases in exchangeable Mg and GN bacteria.Conclusions:The results indicate that the coexistence of earthworms and millipedes can accelerate the litte decomposition process and store more C in the MAOM fractions.This novel finding helps to unlock the processe by which complex SOM systems serve as C sinks in tropical forests and addresses the importance of soil mac rofauna in maintaining C-neutral atmospheric conditions under global climate change. 展开更多
关键词 Tropical and subtropical forest Soil organic matter fractions EARTHWORM MILLIPEDES litter decomposition
下载PDF
The Transport and Persistence of Escherichia coli in Leachate from Poultry Litter Amended Soils
3
作者 Lorra Belle Hill 《Open Journal of Soil Science》 2024年第4期269-282,共14页
Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay s... Fecal coliform bacteria such as Escherichia coli (E. coli) are one of the main sources of groundwater pollution. An assessment of the transport and Persistence of E. coli in poultry litter amended Decatur silty Clay soil and Hartsells Sandy soil was conducted using soil columns and simulated groundwater leaching. Enumeration of initial E. coli was determined to range from 2.851 × 10<sup>3</sup> to 3.044 × 10<sup>3</sup> CFU per gram of soil. These results have been used in a batch study to determine the persistence rate of E. coli in Decatur silty Clay soil and Hartsells Sandy soil. Results prove that E. coli survival growth rate increases for clay soil later than and at a higher rate than sandy soil. The column study has determined that E. coli was transported at a rate of 3.7 × 10<sup>6</sup><sup> </sup>CFU for Decatur silty loam and 6.3 × 10<sup>6</sup><sup> </sup>CFU for Hartsells sandy per gram of soil. Further, linear regression analysis predictions show higher porosity and soil moisture content affect transport, and Hartsells sandy soil has higher transport of E. coli due to its higher porosity and lower volumetric water content. 展开更多
关键词 TRANSPORT LEACHATE PERSISTENCE Poultry litter E. coli
下载PDF
Litter Productivity and Nutrient Return Characteristics of Three Typical Forest Stands in Golden Mountain
4
作者 Fengchen Yan Jiang Zhu +2 位作者 Juyang Wu Jinshi Chen Zijun Tian 《Open Journal of Applied Sciences》 2024年第2期353-370,共18页
Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study i... Objective: The paper aims to analyze the dynamic characteristics of litter production and nutrient return of the forest ecosystems in subtropical areas, and provide a theoretical basis for the nutrient cycling study in southwest Hubei Province and carbon sink function of the whole forest ecosystem. Methods: Three typical forest stands (Chinese fir plantation, Cryptomeria fortunei plantation and evergreen and deciduous broad-leaved mixed forest) in Golden Mountain Forest Farm in southwest Hubei Province were investigated and monitored continuously for the litter types and productivity and nutrient return. Results: The annual litter productivity of the three forest stands ranged from 161.77 to 396.26 kg·hm<sup>-2</sup>;Litters of branches, leaves and reproductive organs accounted for 14.14% - 20.85%, 33.26% - 78.33%, 7.52% - 42.18% of the total, respectively;The litter productivity and total litter productivity of each composition in the three forest stands show unimodal or bimodal changes over months, and the total litter productivity reached the highest value in January, April and October respectively. For different nutrient contents of the three forest stands, the common feature is C > N. The order of nutrient return amount from greatest to least is evergreen and deciduous broad-leaved mixed forest, Cryptomeria fortunei plantation and Chinese fir plantation. For different nutrient return amounts, the common feature is C > N, and the nutrient return amounts are 76.51-180.69 kg·hm<sup>-2</sup> and 2.3 - 5.71 kg·hm<sup>-2</sup> respectively. Conclusion: The annual litter productivity and nutrient return amount of the evergreen and deciduous broad-leaved mixed forest are the highest among the three forest stands. Therefore, protecting the evergreen and deciduous broad-leaved mixed forest and studying the litter changes of Chinese fir plantation and Cryptomeria fortunei plantation are of far-reaching significance for the development of sustainable forest management in this region and the further improvement of the carbon sequestration function of the whole forest ecosystem. 展开更多
关键词 Golden Mountain litter Productivity Nutrient Return Amount Nutrient Content
下载PDF
Effect of Forest Litter on the Regeneration of Larix sibirica: Insight from Aqueous Extract and Litter Coverage
5
作者 Shanchao Zhao Qiao Xu 《Journal of Geoscience and Environment Protection》 2024年第2期57-70,共14页
The effect of litter on forest regeneration depends on the characteristics of regional climate and also shows community specificity. The influences of plant litter on seed germination and seedling growth of Larch Sibe... The effect of litter on forest regeneration depends on the characteristics of regional climate and also shows community specificity. The influences of plant litter on seed germination and seedling growth of Larch Siberian forest in the Altai Mountains were investigated through two simulated experiments including litter coverage and litter aqueous extracts. In the litter coverage experiment, three litter coverage methods including above (D), below (S) and in the middle (Z) of litter were set with the litter coverage thickness of 0, 1, 2, and 4 cm, while two aqueous extract obtained methods using the air-dried litter and litter ash after fir were used with the concentration of 10%, 40%, 80% and 100% in the present study. Results showed that: the aqueous extracts obtained using the air-dried litter restrained the seed germination, while the aqueous extracts obtained using litter ash improved the seed germination. Compared with other litter concentration, the influences of 100% concentration reach highest. The seed germination rate, seed germination potential and vital index under the treatment of seeds above the litter coverage were highest, which were significantly higher than other treatments. The above-ground biomass was significantly higher and the inhibition index of below-ground bio-mass was significantly lower under the treatment of seed above the litter with thin litter cover-age (S1) compared to other litter coverage treatments. These results indicated that the litter aqueous extract and the litter coverage had a combined effect on the seed germination and seedling growth of Siberian larch forest. Fire disturbance could promote seed germination by modifying the adverse effects of litter aqueous extracts and litter coverage, and thus plays an important role in the regeneration of Siberian larch in the Altai Mountains. 展开更多
关键词 litter Physical Barrier Fire Burning Seed Germination Northwest China
下载PDF
The amelioration of degraded larch(Larix olgensis)soil depends on the proportion of Aralia elata litter in larch-A.elata agroforestry systems
6
作者 Pingzhen Gao Jiaojun Zhu +2 位作者 Qiaoling Yan Kai Yang Jinxin Zhang 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第4期1065-1076,共12页
Research has indicated that introducing Aralia elata into larch plantations forms an agroforestry system which could provide economic benefi ts for local farmers and improve degraded soils.However,the impact of litter... Research has indicated that introducing Aralia elata into larch plantations forms an agroforestry system which could provide economic benefi ts for local farmers and improve degraded soils.However,the impact of litter mixtures on soil chemical and microbial properties in this agroforestry system are unclear,which limits effi cient management of the agroforestry system.A 365-d incubation experiment examined the eff ect of litter mixtures of diff erent proportions of larch(L)and A.elata(A)on soil chemical and microbial properties.The results show that levels of mineral N,available P,microbial biomass carbon and nitrogen,cumulative C mineralization,and activities of hydrolases and oxidases increased with an increase of A.elata in the litter mixtures.Concentration of total soil carbon,nitrogen,and phosphorous did not change(except for total nitrogen).Compared with larch litter alone,levels of mineral N,available P,microbial biomass carbon and nitrogen,cumulative C mineralization,and the activities of hydrolases and oxidases increased by 7.6–433.5%.Most chemical and microbial properties were positively correlated with mixed litter proportions and the initial levels of N,P,K,Ca,Mg,Mn,Zn and Cu in the litter,while negatively correlated with the initial concentrations of C,Fe and lignin,C/N and lignin/N ratios.The results indicate that A.elata litter can improve degraded larch soil and the degree depends on the proportion of A.elata litter in the litter mixtures. 展开更多
关键词 Larch-based agroforestry Incubation experiment litter mixtures litter quality Soil properties
下载PDF
Ecological stoichiometric comparison of plant-litter-soil system in mixed-species and monoculture plantations of Robinia pseudoacacia,Amygdalus davidiana,and Armeniaca sibirica in the Loess Hilly Region of China 被引量:1
7
作者 Senbao Lu Yunming Chen +1 位作者 Jordi Sardans Josep Penuelas 《Forest Ecosystems》 SCIE CSCD 2023年第3期411-424,共14页
We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspeci... We examined how afforestation patterns impact carbon(C),nitrogen(N),and phosphorus(P)stoichiometry in the plant-litter-soil system.Plant leaf,branch,stem,and root,litter,and soil samples were collected from mixedspecies plantations of Robinia pseudoacacia with Amygdalus davidiana(RPAD),R.pseudoacacia with Armeniaca sibirica(RPAS),and monocultures of R.pseudoacacia(RP),A.davidiana(AD),and A.sibirica(AS)in the Loess Hilly Region.The results showed that in mixed-species plantations,R.pseudoacacia had lower leaf N and P concentrations than in monocultures,while both A.davidiana and A.sibirica had higher leaf N and P concentrations.Soil P limited tree growth in both afforestation models.Mixing R.pseudoacacia with A.davidiana or A.sibirica reduced N-limitation during litter decomposition.Average soil total N and P concentrations were higher in RPAS than in RPAD,and both were higher than the corresponding monocultures.The average soil C:N ratio was the smallest in RPAS,while the average soil C:P ratio was larger in RPAS than in RP.A positive correlation between N and P concentrations,and between C:N and C:P ratios,was found in litter and all plant organs of mono-and mixedstands.Alternatively,for N concentration and C:N ratio,the correlations between plant(i.e.,leaf,branch,root)and litter and between plant and soil were inverse between plantation types.RPAD has an increased litter decomposition rate to release N and P,while RPAS has a faster rate of soil N mineralization.RPAD was the best plantation(mixed)to improve biogeochemical cycling,as soil nutrient restrictions,particularly for P-limitation,on trees growth were alleviated.This study thus provides insights into suitable tree selection and management by revealing C:N:P stoichiometry in the plant-litter-soil system under different afforestation patterns. 展开更多
关键词 Stoichiometry PLANT litter Soil Tree mixture Loess Plateau
下载PDF
Lightweight Surface Litter Detection Algorithm Based on Improved YOLOv5s 被引量:1
8
作者 Zunliang Chen Chengxu Huang +1 位作者 Lucheng Duan Baohua Tan 《Computers, Materials & Continua》 SCIE EI 2023年第7期1085-1102,共18页
In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed ... In response to the problem of the high cost and low efficiency of traditional water surface litter cleanup through manpower,a lightweight water surface litter detection algorithm based on improved YOLOv5s is proposed to provide core technical support for real-time water surface litter detection by water surface litter cleanup vessels.The method reduces network parameters by introducing the deep separable convolution GhostConv in the lightweight network GhostNet to substitute the ordinary convolution in the original YOLOv5s feature extraction and fusion network;introducing the C3Ghost module to substitute the C3 module in the original backbone and neck networks to further reduce computational effort.Using a Convolutional Block Attention Mechanism(CBAM)module in the backbone network to strengthen the network’s ability to extract significant target features from images.Finally,the loss function is optimized using the Focal-EIoU loss func-tion to improve the convergence speed and model accuracy.The experimental results illustrate that the improved algorithm outperforms the original Yolov5s in all aspects of the homemade water surface litter dataset and has certain advantages over some current mainstream algorithms in terms of model size,detection accuracy,and speed,which can deal with the problems of real-time detection of water surface litter in real life. 展开更多
关键词 Surface litter detection LIGHTWEIGHT YOLOv5s GhostNet deep separable convolution convolutional block attention mechanism(CBAM)
下载PDF
How do international agreement constraints affect marine litter management strategies?A research based on differential game
9
作者 LENG Jie QI Xin CAO Zeng 《Ecological Economy》 2023年第1期27-43,共17页
Based on differential game theory,the decision-making problem of two homogeneous countries facing transboundary marine litter governance is studied.On the basis of assuming that the input of marine litter is an exogen... Based on differential game theory,the decision-making problem of two homogeneous countries facing transboundary marine litter governance is studied.On the basis of assuming that the input of marine litter is an exogenous variable,the focus is on reducing the accumulation of marine litter through cleanup and transfer processing by both parties.Considering the constant and increasing input of marine litter,in the framework of international agreement constraints,the analysis of the game behavior of the players in the marine litter governance under the open-loop strategy(in the case of agreement constraints)and the Markov strategy(in the case of no agreement constraints)was compared and analyzed.The research results show that when the direct pollution cost of marine litter is high enough,both sides of the game adopt an open-loop strategy that complies with the constraints of the agreement,which can reduce the accumulation of marine litter and improve the environmental quality.However,when there is a high initial accumulation of marine litter,the Markov strategy without protocol constraints will be better than the open-loop strategy.In the case that marine litter does not need to be transferred,there will be no difference between the two sides of the game adopting the Markov strategy and adopting the open-loop strategy on the equilibrium growth path. 展开更多
关键词 arine litter governance clean-up strategy differential game protocol constraints
下载PDF
Effectiveness of Combined Biochar and Lignite with Poultry Litter on Soil Carbon Sequestration and Soil Health
10
作者 Ardeshir Adeli John P. Brooks +3 位作者 Dana Miles Todd Mlsna Read Quentin Johnie N. Jenkins 《Open Journal of Soil Science》 2023年第2期124-149,共26页
Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, a... Healthy soils are important to ensure satisfactory crop growth and yield. Poultry litter (PL), as an organic fertilizer, has proven to supply the soil with essential macro and micronutrients, enhance soil fertility, and improve crop productivity. Integrating this treatment has the potential to improve soil physical and biological properties by increasing soil carbon, C. However, rapid decomposition and mineralization of PL, particularly in the hot and humid southeastern U.S., resulted in losing C and reduced its effect on soil health. Biochar and lignite have been proposed to stabilize and mitigate C loss through application of fresh manure. However, their combined effects with PL on C sequestration and soil health components are limited. A field experiment was conducted on Leeper silty clay loam soil from 2017 to 2020 to evaluate the combined effect on soil properties when applying biochar and lignite with PL to cotton (Gossypium hirsutum L.). The experimental design was a randomized complete block involving nine treatments replicated three times. Treatments included PL and inorganic nitrogen, N, fertilizer with or without biochar and lignite, and an unfertilized control. Application rates were 6.7 Mgkg⋅ha−1</sup> for PL, 6.7 Mgkg⋅ha−1</sup></sup> for biochar and lignite and 134 kg⋅ha−1</sup><sup></sup> for inorganic N fertilizer. Integration of PL and inorganic fertilizer with biochar and lignite, resulted in greater soil infiltration, aggregate stability, plant available water, reduced bulk density and penetration resistance as compared to the sole applications of PL and inorganic fertilizer. 展开更多
关键词 Soil Health LIGNITE BIOCHAR Poultry litter
下载PDF
The return and loss of litter phosphorus in different types of sand dunes in Horqin Sandy Land,northeastern China 被引量:3
11
作者 QuanLai ZHOU DeMing JIANG +4 位作者 ZhiMin LIU Alamusa XueHua LI YongMing LUO HongMei WANG 《Journal of Arid Land》 SCIE 2012年第4期431-440,共10页
Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their rel... Litter phosphorus (P) return is important to maintain the P cycle and balance in the sandy land of arid areas. In this study, we determined the loss and return of litter P in sand dune areas and elucidated their relation- ship. We investigated litter production and litter P amount, and simulated leaf litter moving dynamics to understand the relationships between the loss of litter P and the total litter P, and between the return of litter P and the total litter P in active (AD), semi-stabilized (SSD) and stabilized (SD) dunes in Inner Mongolia, northeastern China. The vegetation litter P was 12.6, 94.5, and 201.6 mg P/m2 in AD, SSD, and SD, respectively. A significant movement and loss of leaf litter P with time occurred on the three types of sand dunes. As a result, the loss of P was 7.4, 46.9, and 69.8 mg P/m2 and the return of P was 5.5, 47.6, and 131.8 mg P/m2 in AD, SSD, and SD, respectively. The rela- tionship between both loss and return of P and total litter P in AD, SSD, and SD was revealed by linear regression. The slope of the regression line indicated the rate of loss or return of litter P. From AD to SD, the loss rate showed a declining slope (0.52, 0.32, and 0.17 for AD, SSD, and SD, respectively), and the return rate showed a rising slope (0.48, 0.67, and 0.83 for AD, SSD, and SD, respectively). The loss of litter P should be regarded in the local man- agement of vegetation and land in sand dune areas. Improved vegetation restoration measures are necessary to decrease litter P loss to maintain the stability of ecosystems in sand dune areas. 展开更多
关键词 leaf litter litter loss litter production sand dune areas vegetation restoration
下载PDF
A comparison of decomposition dynamics among green tree leaves,partially decomposed tree leaf litter and their mixture in a warm temperate forest ecosystem 被引量:2
12
作者 Juan Wang Yeming You +2 位作者 Zuoxin Tang Xiaolu Sun Osbert Jianxin Sun 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第5期1037-1045,共9页
Decomposition dynamics were compared among green tree leaves, partially decomposed tree leaf litter (i.e., decayed tree leaf litter on forest floor) and a mixture of the two in a warm temperate forest ecosystem in c... Decomposition dynamics were compared among green tree leaves, partially decomposed tree leaf litter (i.e., decayed tree leaf litter on forest floor) and a mixture of the two in a warm temperate forest ecosystem in central China to test the influence of litter chemical quality on the degree of decomposition. The study was conducted in situ at two contrasting forest sites, an oak forest dominated by Quercus aliena var. acuteserrata Maxim., and a mixed pine and oak forest dominated by Pinus armandii Franch. and Q. aliena var. acuteserrata. We found marked differences in the rate of decomposition among litter types at both forest sites; the litter decom- position constant, k, was about 39 % greater at the oak forest site and more than 70 % greater at the pine-oak forest site, for green leaves than for partially decomposed leaf litter. The decomposition dynamics and temporal changes in litter chemistry of the three litter types also greatly differed between the two forest sites. At both forest sites, the higher rate of decomposition for the green leaves was associated with a and lower carbon to N ratio higher nitrogen (N) content (C/N) and acid-unhydrolyz- able residue to N ratio (AUR/N). We did not find any non- additive effects when mixing green leaves and partially decomposed leaf litter. Our findings support the con- tention that litter chemical quality is one of the most important determinants of litter decomposition in forest ecosystems at the local or regional scale, but the effect of litter chemical quality on decomposition differs between the contrasting forest types and may vary with the stage of decomposition. 展开更多
关键词 Carbon cycling litter chemistry litterdecay litter quality RECALCITRANCE
下载PDF
Temporal shifts in the explanatory power and relative importance of litter traits in regulating litter decomposition 被引量:2
13
作者 Zhaolin Sun Peng Tian +5 位作者 Xuechao Zhao Yanping Wang Shunzhong Wang Xiangmin Fang Qingkui Wang Shengen Liu 《Forest Ecosystems》 SCIE CSCD 2022年第6期755-763,共9页
Background:Litter traits critically affect litter decomposition from local to global scales.However,our understanding of the temporal dynamics of litter trait-decomposition linkages,especially their dependence on plan... Background:Litter traits critically affect litter decomposition from local to global scales.However,our understanding of the temporal dynamics of litter trait-decomposition linkages,especially their dependence on plant functional type remains limited.Methods:We decomposed the leaf litter of 203 tree species that belong to two different functional types(deciduous and evergreen)for 2 years in a subtropical forest in China.The Weibull residence model was used to describe the different stages of litter decomposition by calculating the time to 10%,25%and 50%mass loss(Weibull t_(1/10),t_(1/4),and t_(1/2)respectively)and litter mean residence time(Weibull MRT).The resulting model parameters were used to explore the control of litter traits(e.g.,N,P,condensed tannins and tensile strength)over leaf litter decomposition across different decomposition stages.Results:The litter traits we measured had lower explanatory power for the early stages(Weibull t_(1/10)and t_(1/4))than for the later stages(Weibull t_(1/2)and MRT)of decomposition.The relative importance of different types of litter traits in influencing decomposition changed dramatically during decomposition,with physical traits exerting predominant control for the stages of Weibull t_(1/10)and MRT and nutrient-related traits for the stages of Weibull t_(1/4),and t_(1/2).Moreover,we found that litter decomposition of the early three stages(Weibull t_(1/10),t_(1/4),and t_(1/2))of the two functional types was controlled by different types of litter traits;that is,the litter decomposition rates of deciduous species were predominately controlled by nutrient-related traits,while the litter decomposition rates of evergreen species were mainly controlled by carbon-related traits.Conclusions:This study suggests that litter trait-decomposition linkages vary with decomposition stages and are strongly mediated by plant functional type,highlighting the necessity to consider their temporal dynamics and plant functional types for improving predictions of litter decomposition. 展开更多
关键词 Decomposition model Decomposition stage litter decay litter physical traits litter quality Plant functional type
下载PDF
Impact of tree litter identity, litter diversity and habitat quality on litter decomposition rates in tropical moist evergreen forest 被引量:1
14
作者 Seyoum Getaneh Olivier Honnay +4 位作者 Ellen Desie Kenny Helsen Lisa Couck Simon Shibru Bart Muys 《Forest Ecosystems》 SCIE CSCD 2022年第2期247-256,共10页
Background:Attempts to restore degraded highlands by tree planting are common in East Africa.However,up till now,little attention has been given to effects of tree species choice on litter decomposition and nutrient r... Background:Attempts to restore degraded highlands by tree planting are common in East Africa.However,up till now,little attention has been given to effects of tree species choice on litter decomposition and nutrient recycling.Method:In this study,three indigenous and two exotic tree species were selected for a litter decomposition study.The objective was to identify optimal tree species combinations and tree diversity levels for the restoration of degraded land via enhanced litter turnover.Litterbags were installed in June 2019 into potential restoration sites(disturbed natural forest and forest plantation)and compared to intact natural forest.The tested tree leaf litters included five monospecific litters,ten mixtures of three species and one mixture of five species.Standard green and rooibos tea were used for comparison.A total of 1,033 litters were retrieved for weight loss analysis after one,three,six,and twelve months of incubation.Results:The finding indicates a significant effect of both litter quality and litter diversity on litter decomposition.The nitrogen-fixing native tree Millettia ferruginea showed a comparable decomposition rate as the fast decom-posing green tea.The exotic conifer Cupressus lusitanica and the native recalcitrant Syzygium guineense have even a lower decomposition rate than the slowly decomposing rooibos tea.A significant correlation was observed be-tween litter mass loss and initial leaf litter chemical composition.Moreover,we found positive non-additive ef-fects for litter mixtures including nutrient-rich and negative non-additive effects for litter mixtures including poor leaf litters respectively.Conclusion:These findings suggest that both litter quality and litter diversity play an important role in decom-position processes and therefore in the restoration of degraded tropical moist evergreen forest. 展开更多
关键词 Antagonistic effect Forest type Functional diversity litterBAG litter mixture litter quality Non-additive effect Tea bag index
下载PDF
Does litterfall from native trees support rainfed agriculture? Analysis of Ficus trees in agroforestry systems of southern dry agroclimatic zone of Karnataka, southern India
15
作者 B. Dhanya Syam Viswanath Seema Purushothaman 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第2期333-338,共6页
Trees of the genus Ficus, integral components of indigenous rainfed agro-ecosystems of the southern dry agro-climatic zone of Karnataka, southern India, have traditionally been associated with the ecological service o... Trees of the genus Ficus, integral components of indigenous rainfed agro-ecosystems of the southern dry agro-climatic zone of Karnataka, southern India, have traditionally been associated with the ecological service of soil quality enhancement in addition to various direct use benefits. We assessed the soil enrichment service of Ficus benghalensis L. a common Ficus species in these agroforestry systems, by quantifying nutrient return via litter fall. Litterfall estimation and chemical analysis of litter showed that F. benghalensis trees produce 3,512 kg ha-1 of litter annually which, on decomposition, can satisfy up to 76.70 % of N, 20.24% of P and 67.76% of K requirements of dryland crops annually per hectare. This can lead to an avoided cost of compost of US $ 36.46 ha-1·a-1 in dryland farming systems. The slow rate of decay of Ficus litter, as revealed in litter decomposition studies indicates its potential as ideal mulch for dryland soils. We discuss the complementarity between Ficus litterfall and cropping patterns in Mandya, and its implications for rainfed agricultural systems. 展开更多
关键词 soil enrichment litter traps litter bags litter decomposition complementarity
下载PDF
Heritabilities and genetic and phenotypic correlations of litter uniformity and litter size in Large White sows 被引量:4
16
作者 ZHANG Tian WANG Li-gang +8 位作者 SHI Hui-bi YAN Hua ZHANG Long-chao LIU Xin PU Lei LIANG Jing ZHANG Yue-bo ZHAO Ke-bin WANG Li-xian 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2016年第4期848-854,共7页
Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of ... Litter uniformity, which is usually represented by within-litter weight coefficient of variation at birth (CVB), could influence litter performance of sows and the profitability of pig enterprises. The objective of this study was to characterize CVB and its effect on other reproductive traits in Large White sows. Genetic parameters and genetic correlation of the reproductive traits, including CVB, within-litter weight coefficient of variation at three weeks (CVT), total number born (TNB), number born alive (NBA), number born dead (NBD), gestation length (GL), piglet mortality at birth (Mo), piglet mortality at three weeks (M3), total litter weight at birth (TLW0), and total litter weight at three weeks (TLW3) were estimated for 2 032 Large White litters. The effects of parity and classified litter size on CVB, CVT, TNB, NBA, NBD, GL, M0, M3, TLW0, and TLW3 were also estimated. The heritabilities of these reproductive traits ranged from 0.06 to 0.17, with the lowest heritability for CVB and the highest heritability for TLW0. Phenotypic and genetic correlations between these reproductive traits were low to highly positive and negative (ranging from -0.03 to 0.93, and -0.53 to 0.93, respectively). The genetic correlations between TNB and CVB, and between M0 and CVB were 0.32 and 0.29, respectively. In addition, CVB was significantly influenced by parity and litter size class (P〈0.05). All the results suggest that piglet uniformity should be maintained in pig production practices and pig breeding programs. 展开更多
关键词 genetic parameter litter uniformity litter size piglets mortality
下载PDF
Effects of ultraviolet(UV) radiation and litter layer thickness on litter decomposition of two tree species in a semi-arid site of Northeast China 被引量:3
17
作者 MAO Bing ZHAO Lei +1 位作者 ZHAO Qiong ZENG Dehui 《Journal of Arid Land》 SCIE CSCD 2018年第3期416-428,共13页
Forests and grasslands in arid and semi-arid regions receive high-intensity ultraviolet(UV) radiation year-round. However, how the UV radiation affects the litter decomposition on the forest floor remains unclear. H... Forests and grasslands in arid and semi-arid regions receive high-intensity ultraviolet(UV) radiation year-round. However, how the UV radiation affects the litter decomposition on the forest floor remains unclear. Here, we conducted a field-based experiment in 2011 in the southeastern Horqin Sandy Land, Northeast China, to investigate the effects of UV radiation, litter layer thickness, and their interaction on the mass loss and chemical properties of decomposing litter from Xiaozhuan poplar(Populus × xiaozhuanica) and Mongolian pine(Pinus sylvestris var. mongolica) plantation trees. We found that UV radiation accelerated the decomposition rates of both the Xiaozhuan poplar litter and Mongolian pine litter. For both species, the thick-layered litter had a lower mass loss than the thin-layered litter. The interaction between UV radiation and litter layer thickness significantly affected the litter mass loss of both tree species. However, the effects of UV radiation on the chemical properties of decomposing litter differed between the two species, which may be attributed to the contrasting initial leaf litter chemical properties and morphology. UV radiation mostly had positive effects on the lignin concentration and lignin/N ratio of Xiaozhuan poplar litter, while it had negative effects on the N concentration of Mongolian pine litter. Moreover, litter layer thickness and its interaction with UV radiation showed mostly positive effects on the N concentration and lignin/N ratio of Xiaozhuan poplar litter and the ratios of C/N and lignin/N of Mongolian pine litter, and mostly negative effects on the C/N ratio of Xiaozhuan poplar litter and the N concentration of Mongolian pine litter. Together, these results reveal the important roles played by UV radiation and litter layer thickness in the process of litter decomposition in this semi-arid region, and highlight how changes in the litter layer thickness can exert strong influences on the photodegradation of litter in tree plantations. 展开更多
关键词 LIGNIN litter decomposition litter layer thickness nitrogen forest plantation PHOTODEGRADATION UV radiation
下载PDF
Importance of overstorey attributes for understorey litter production and nutrient cycling in European forests 被引量:3
18
作者 Dries Landuyt Evy Ampoorter +6 位作者 Cristina CBastias Raquel Benavides Sandra Müller Michael Scherer-Lorenzen Fernando Valladares Safaa Wasof Kris Verheyen 《Forest Ecosystems》 SCIE CSCD 2020年第4期591-601,共11页
Background:In contrast with the negligible contribution of the forest understorey to the total aboveground phytobiomass of a forest,its share in annual litter production and nutrient cycling may be more important.Whet... Background:In contrast with the negligible contribution of the forest understorey to the total aboveground phytobiomass of a forest,its share in annual litter production and nutrient cycling may be more important.Whether and how this functional role of the understorey differs across forest types and depends upon overstorey characteristics remains to be investigated.Methods:We sampled 209 plots of the FunDivEUROPE Exploratory Platform,a network of study plots covering local gradients of tree diversity spread over six contrasting forest types in Europe.To estimate the relative contribution of the understorey to carbon and nutrient cycling,we sampled non-lignified aboveground understorey biomass and overstorey leaf litterfall in all plots.Understorey samples were analysed for C,N and P concentrations,overstorey leaf litterfall for C and N concentrations.We additionally quantified a set of overstorey attributes,including species richness,proportion of evergreen species,light availability(representing crown density)and litter quality,and investigated whether they drive the understorey’s contribution to carbon and nutrient cycling.Results and conclusions:Overstorey litter production and nutrient stocks in litterfall clearly exceeded the contribution of the understorey for all forest types,and the share of the understorey was higher in forests at the extremes of the climatic gradient.In most of the investigated forest types,it was mainly light availability that determined the contribution of the understorey to yearly carbon and nutrient cycling.Overstorey species richness did not affect the contribution of the understorey to carbon and nutrient cycling in any of the investigated forest types. 展开更多
关键词 FunDivEUROPE Nutrient cycling litter production UNDERSTOREY Overstorey Tree species richness Light availability litter quality Proportion evergreen tree species
下载PDF
Deposition of litter and nutrients in leaves and twigs in different plant communities of northeastern Mexico 被引量:2
19
作者 Humberto González-Rodríguez Roque Gonzalo Ramírez-Lozano +3 位作者 Israel Cantú-Silva Marco Vinicio Gómez-Meza Eduardo Estrada-Castillón José Ramón Arévalo 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第5期1307-1314,共8页
Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems.This is key information to understanding ecosystem dynamics and changes in a scenario of global warming.The ob... Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems.This is key information to understanding ecosystem dynamics and changes in a scenario of global warming.The objective of this research was to assess litterfall production,the potential deposition of macro and micronutrients through leaf and twig fall as well as macronutrient—use efficiency in three forest ecosystems at different altitudes: a pine forest mixed with deciduous species(S1); a Quercus spp.forest(S2); and,a Tamaulipan thornscrub forest(S3).Total annual litterfall deposition was 594,742 and 533 g m^(-2) for S1,S2 and S3.Leaf litter was higher (68%) than twigs(18%),reproductive structures(8%) or miscellaneous material(6%).Micronutrient leaf deposition was higher for Fe followed by Mn,Zn and Cu.Macronutrient leaf deposition was higher for Ca followed by K,Mg and P.Even though P deposition in leaves and twigs was lower than other macronutrients,its nutrient use efficiency was higher than Ca,Mg or K.Altitude and species composition determine litter and nutrient deposition,with higher values at mid-altitudes(550 m).Altitude is an important factor to consider when analyzing litter production as well as nutrient deposition as shown in this study.Litter production and nutrient deposition are expected to change in a scenario of global warming. 展开更多
关键词 Deciduous species litter deposition Leaf/twig litter nutrients Pine forest Tamaulipan thornscrub
下载PDF
Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China 被引量:2
20
作者 SU Yuan MA Xiaofei +3 位作者 GONG Yanming LI Kaihui HAN Wenxuan LIU Xuejun 《Journal of Arid Land》 SCIE CSCD 2021年第7期717-729,共13页
Nitrogen(N)addition has profound impacts on litter-mediated nutrient cycling.Numerous studies have reported different effects of N addition on litter decomposition,exhibiting positive,negative,or neutral effects.Previ... Nitrogen(N)addition has profound impacts on litter-mediated nutrient cycling.Numerous studies have reported different effects of N addition on litter decomposition,exhibiting positive,negative,or neutral effects.Previous meta-analysis of litter decomposition under N addition was mainly based on a small number of samples to allow comparisons among ecosystem types.This study presents the results of a meta-analysis incorporating data from 53 published studies(including 617 observations)across forests,grasslands,wetlands,and croplands in China,to investigate how environmental and experimental factors impact the effects of N addition on litter decomposition.Averaged across all of the studies,N addition significantly slows litter decomposition by 7.02%.Considering ecosystem types,N addition significantly accelerates litter decomposition by 3.70%and 11.22%in grasslands and wetlands,respectively,clearly inhibits litter decomposition by 14.53%in forests,and has no significant effects on litter decomposition in croplands.Regarding the accelerated litter decomposition rate in grasslands due to N addition,litter decomposition rate increases slightly with increasing rates of N addition.However,N addition slows litter decomposition in forests,but litter decomposition is at a significantly increasing rate with increasing amounts of N addition.The responses of litter decomposition to N addition are also influenced by the forms of N addition,experiential duration of N addition,humidity index,litter quality,and soil pH.In summary,N addition alters litter decomposition rate,but the direction and magnitude of the response are affected by the forms of N addition,the rate of N addition,ambient N deposition,experimental duration,and climate factors.Our study highlights the contrasting effects of N addition on litter decomposition in forests and grasslands.This finding could be used in biogeochemical models to better evaluate ecosystem carbon cycling under increasing N deposition due to the differential responses of litter decomposition to N addition rates and ecosystem types. 展开更多
关键词 litter decomposition rate N addition ambient N deposition litter quality META-ANALYSIS FORESTS grasslands
下载PDF
上一页 1 2 225 下一页 到第
使用帮助 返回顶部