Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior know...Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.展开更多
In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the w...In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.展开更多
Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support...Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.展开更多
By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification sche...By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.展开更多
Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learnin...Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise.展开更多
The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used t...The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62005307 and 61975228).
文摘Structured illumination microscopy(SIM)is a popular and powerful super-resolution(SR)technique in biomedical research.However,the conventional reconstruction algorithm for SIM heavily relies on the accurate prior knowledge of illumination patterns and signal-to-noise ratio(SNR)of raw images.To obtain high-quality SR images,several raw images need to be captured under high fluorescence level,which further restricts SIM’s temporal resolution and its applications.Deep learning(DL)is a data-driven technology that has been used to expand the limits of optical microscopy.In this study,we propose a deep neural network based on multi-level wavelet and attention mechanism(MWAM)for SIM.Our results show that the MWAM network can extract high-frequency information contained in SIM raw images and accurately integrate it into the output image,resulting in superior SR images compared to those generated using wide-field images as input data.We also demonstrate that the number of SIM raw images can be reduced to three,with one image in each illumination orientation,to achieve the optimal tradeoff between temporal and spatial resolution.Furthermore,our MWAM network exhibits superior reconstruction ability on low-SNR images compared to conventional SIM algorithms.We have also analyzed the adaptability of this network on other biological samples and successfully applied the pretrained model to other SIM systems.
基金supported in part by National Natural Foundation of China (Grant No. 11161042 and No. 11071250)
文摘In this paper, we shall deal with the boundedness of the Littlewood-Paley operators with rough kernel. We prove the boundedness of the Lusin-area integral μΩs and Littlewood-Paley functions μΩ and μλ^* on the weighted amalgam spaces (Lω^q,L^p)^α(R^n)as 1〈q≤α〈p≤∞.
文摘Wavelet, a powerful tool for signal processing, can be used to approximate the target func-tion. For enhancing the sparse property of wavelet approximation, a new algorithm was proposed by using wavelet kernel Support Vector Machines (SVM), which can converge to minimum error with bet-ter sparsity. Here, wavelet functions would be firstly used to construct the admitted kernel for SVM according to Mercy theory; then new SVM with this kernel can be used to approximate the target fun-citon with better sparsity than wavelet approxiamtion itself. The results obtained by our simulation ex-periment show the feasibility and validity of wavelet kernel support vector machines.
基金the National 973 Key Fundamental Research Project of China (Grant No.2002CB312200)
文摘By combining the wavelet decomposition with kernel method, a practical approach of universal multiscale wavelet kernels constructed in reproducing kernel Hilbert space (RKHS) is discussed, and an identification scheme using wavelet support vector machines (WSVM) estimator is proposed for nordinear dynamic systems. The good approximating properties of wavelet kernel function enhance the generalization ability of the proposed method, and the comparison of some numerical experimental results between the novel approach and some existing methods is encouraging.
基金supported,in part,by the National Nature Science Foundation of China under grant numbers 62272236in part,by the Natural Science Foundation of Jiangsu Province under grant numbers BK20201136,BK20191401in part,by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)fund.
文摘Robust watermarking requires finding invariant features under multiple attacks to ensure correct extraction.Deep learning has extremely powerful in extracting features,and watermarking algorithms based on deep learning have attracted widespread attention.Most existing methods use 3×3 small kernel convolution to extract image features and embed the watermarking.However,the effective perception fields for small kernel convolution are extremely confined,so the pixels that each watermarking can affect are restricted,thus limiting the performance of the watermarking.To address these problems,we propose a watermarking network based on large kernel convolution and adaptive weight assignment for loss functions.It uses large-kernel depth-wise convolution to extract features for learning large-scale image information and subsequently projects the watermarking into a highdimensional space by 1×1 convolution to achieve adaptability in the channel dimension.Subsequently,the modification of the embedded watermarking on the cover image is extended to more pixels.Because the magnitude and convergence rates of each loss function are different,an adaptive loss weight assignment strategy is proposed to make theweights participate in the network training together and adjust theweight dynamically.Further,a high-frequency wavelet loss is proposed,by which the watermarking is restricted to only the low-frequency wavelet sub-bands,thereby enhancing the robustness of watermarking against image compression.The experimental results show that the peak signal-to-noise ratio(PSNR)of the encoded image reaches 40.12,the structural similarity(SSIM)reaches 0.9721,and the watermarking has good robustness against various types of noise.
基金Supported by the National Natural Science Foundation of China(60473035)~~
文摘The relationship among Mercer kernel, reproducing kernel and positive definite kernel in support vector machine (SVM) is proved and their roles in SVM are discussed. The quadratic form of the kernel matrix is used to confirm the positive definiteness and their construction. Based on the Bochner theorem, some translation invariant kernels are checked in their Fourier domain. Some rotation invariant radial kernels are inspected according to the Schoenberg theorem. Finally, the construction of discrete scaling and wavelet kernels, the kernel selection and the kernel parameter learning are discussed.