In recent years, face recognition has often been proposed for personal identification. However, there are many difficulties with face recognition systems. For example, an imposter could Iogin the face recognition syst...In recent years, face recognition has often been proposed for personal identification. However, there are many difficulties with face recognition systems. For example, an imposter could Iogin the face recognition system by stealing the facial photograph of a person registered on the facial recognition system. The secudty of the face recognition system requires a live detection system to prevent system Iogin using photographs of a human face. This paper describes an effective, efficient face live detection method which uses physiological motion detected by estimating the eye blinks from a captured video sequence and an eye contour extraction algorithm. This technique uses the conventional active shape model with a random forest classifier trained to recognize the local appearance around each landmark. This local match provides more robustness for optimizing the fitting procedure. Tests show that this face live detection approach successfully discriminates a live human face from a photograph of the registered person's face to increase the face recognition system reliability.展开更多
Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints,which are made of common fingerprint materials,such as silicon,latex,etc.Thus,to protect our privacy,many ...Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints,which are made of common fingerprint materials,such as silicon,latex,etc.Thus,to protect our privacy,many fingerprint liveness detection methods are put forward to discriminate fake or true fingerprint.Current work on liveness detection for fingerprint images is focused on the construction of complex handcrafted features,but these methods normally destroy or lose spatial information between pixels.Different from existing methods,convolutional neural network(CNN)can generate high-level semantic representations by learning and concatenating low-level edge and shape features from a large amount of labeled data.Thus,CNN is explored to solve the above problem and discriminate true fingerprints from fake ones in this paper.To reduce the redundant information and extract the most distinct features,ROI and PCA operations are performed for learned features of convolutional layer or pooling layer.After that,the extracted features are fed into SVM classifier.Experimental results based on the LivDet(2013)and the LivDet(2011)datasets,which are captured by using different fingerprint materials,indicate that the classification performance of our proposed method is both efficient and convenient compared with the other previous methods.展开更多
Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artifici...Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection.展开更多
The probabilities for the technology to be spoofed are widely acknowledged in biometric verification system. Important efforts have been conducted to study such threats and to develop countermeasures to direct attacks...The probabilities for the technology to be spoofed are widely acknowledged in biometric verification system. Important efforts have been conducted to study such threats and to develop countermeasures to direct attacks to the biometric verification system to ensure the security of these systems against spoof attacks and reduce this risk, by using another module that is added to the biometric verification system called the “liveness detection” which uses different anatomical properties to distinguish between real and fake traits. Thus, the robustness of the system against direct attacks can be improved through increasing the security level offered to the final user. This paper is an attempt to construct support biometric security system to protect the iris biometric verification system from spoof attacks, through integrating the iris verification system with addition module called liveness detection which composed of two sub-modules (static and dynamic). A test has been performed, for iris verification phase performed on two types of database (MMU DB) for 180 samples and (CASIA DB) for 90 samples, and gave accuracy (99.44%) with FAR of (0.0277) and FRR (0.0055) for MMU DB, and accuracy (97.77%) with FAR of (0.0333) and FRR (0.0222) for CASIA DB.展开更多
X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the ...X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.展开更多
Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the ir...Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.展开更多
With the rapid development and widespread application of electric vehicles(EVs)around the world,the wireless power transfer(WPT)technology is also accelerating for commercial applications in EV wireless charging(EV-WP...With the rapid development and widespread application of electric vehicles(EVs)around the world,the wireless power transfer(WPT)technology is also accelerating for commercial applications in EV wireless charging(EV-WPT)because of its high reliability,safety,and convenience,especially high suitability for the future self-driving scenario.Foreign object detection(FOD),mainly including metal object detection and living object detection,is required urgently and timely for the practical application of EV-WPT technology to ensure electromagnetic safety.In the last decade,especially in the past three years,many pieces of research on FOD have been reported.This article reviews FOD state-of-the-art technology for EV-WPT and compares the pros and cons of different approaches in terms of sensitivity,reliability,adaptability,complexity,and cost.Future challenges for research and development are also discussed to encourage commercialisation of EV-WPT technique.展开更多
基金Supported by the National Key Basic Research and Development (973) Program of China (No.2007CB311004)
文摘In recent years, face recognition has often been proposed for personal identification. However, there are many difficulties with face recognition systems. For example, an imposter could Iogin the face recognition system by stealing the facial photograph of a person registered on the facial recognition system. The secudty of the face recognition system requires a live detection system to prevent system Iogin using photographs of a human face. This paper describes an effective, efficient face live detection method which uses physiological motion detected by estimating the eye blinks from a captured video sequence and an eye contour extraction algorithm. This technique uses the conventional active shape model with a random forest classifier trained to recognize the local appearance around each landmark. This local match provides more robustness for optimizing the fitting procedure. Tests show that this face live detection approach successfully discriminates a live human face from a photograph of the registered person's face to increase the face recognition system reliability.
文摘Fingerprint-spoofing attack often occurs when imposters gain access illegally by using artificial fingerprints,which are made of common fingerprint materials,such as silicon,latex,etc.Thus,to protect our privacy,many fingerprint liveness detection methods are put forward to discriminate fake or true fingerprint.Current work on liveness detection for fingerprint images is focused on the construction of complex handcrafted features,but these methods normally destroy or lose spatial information between pixels.Different from existing methods,convolutional neural network(CNN)can generate high-level semantic representations by learning and concatenating low-level edge and shape features from a large amount of labeled data.Thus,CNN is explored to solve the above problem and discriminate true fingerprints from fake ones in this paper.To reduce the redundant information and extract the most distinct features,ROI and PCA operations are performed for learned features of convolutional layer or pooling layer.After that,the extracted features are fed into SVM classifier.Experimental results based on the LivDet(2013)and the LivDet(2011)datasets,which are captured by using different fingerprint materials,indicate that the classification performance of our proposed method is both efficient and convenient compared with the other previous methods.
基金supported by the NSFC (U1536206,61232016,U1405254,61373133, 61502242)BK20150925the PAPD fund
文摘Fingerprint authentication system is used to verify users' identification according to the characteristics of their fingerprints.However,this system has some security and privacy problems.For example,some artificial fingerprints can trick the fingerprint authentication system and access information using real users' identification.Therefore,a fingerprint liveness detection algorithm needs to be designed to prevent illegal users from accessing privacy information.In this paper,a new software-based liveness detection approach using multi-scale local phase quantity(LPQ) and principal component analysis(PCA) is proposed.The feature vectors of a fingerprint are constructed through multi-scale LPQ.PCA technology is also introduced to reduce the dimensionality of the feature vectors and gain more effective features.Finally,a training model is gained using support vector machine classifier,and the liveness of a fingerprint is detected on the basis of the training model.Experimental results demonstrate that our proposed method can detect the liveness of users' fingerprints and achieve high recognition accuracy.This study also confirms that multi-resolution analysis is a useful method for texture feature extraction during fingerprint liveness detection.
文摘The probabilities for the technology to be spoofed are widely acknowledged in biometric verification system. Important efforts have been conducted to study such threats and to develop countermeasures to direct attacks to the biometric verification system to ensure the security of these systems against spoof attacks and reduce this risk, by using another module that is added to the biometric verification system called the “liveness detection” which uses different anatomical properties to distinguish between real and fake traits. Thus, the robustness of the system against direct attacks can be improved through increasing the security level offered to the final user. This paper is an attempt to construct support biometric security system to protect the iris biometric verification system from spoof attacks, through integrating the iris verification system with addition module called liveness detection which composed of two sub-modules (static and dynamic). A test has been performed, for iris verification phase performed on two types of database (MMU DB) for 180 samples and (CASIA DB) for 90 samples, and gave accuracy (99.44%) with FAR of (0.0277) and FRR (0.0055) for MMU DB, and accuracy (97.77%) with FAR of (0.0333) and FRR (0.0222) for CASIA DB.
文摘X-ray digital imaging technology has found wide application owing to its advantages of real-time, visualization and rapid imaging. In substations the substantial electromagnetic interference has some influence on the live detection by the X-ray digital imaging technology, hindering the promotion of the technology in the detection of electric equipment. Based on a large number of field tests, the author carded out a series of researches on electromagnetic interference protection measures, image de-noising, and image enhancement algorithms.
基金This work was supported in part by project supported by National Natural Science Foundation of China(Grant No.61572182,No.61370225)project supported by Hunan Provincial Natural Science Foundation of China(Grant No.15JJ2007).
文摘Aim to countermeasure the presentation attack for iris recognition system,an iris liveness detection scheme based on batch normalized convolutional neural network(BNCNN)is proposed to improve the reliability of the iris authentication system.The BNCNN architecture with eighteen layers is constructed to detect the genuine iris and fake iris,including convolutional layer,batch-normalized(BN)layer,Relu layer,pooling layer and full connected layer.The iris image is first preprocessed by iris segmentation and is normalized to 256×256 pixels,and then the iris features are extracted by BNCNN.With these features,the genuine iris and fake iris are determined by the decision-making layer.Batch normalization technique is used in BNCNN to avoid the problem of over fitting and gradient disappearing during training.Extensive experiments are conducted on three classical databases:the CASIA Iris Lamp database,the CASIA Iris Syn database and Ndcontact database.The results show that the proposed method can effectively extract micro texture features of the iris,and achieve higher detection accuracy compared with some typical iris liveness detection methods.
基金Key R&D Program of Guangdong Province,China(No.2020B0404030004)partly by the open research fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy(SZ)(No.GML-KF-22-19)partly by the National Natural Science Foundation of China(No.62001301).
文摘With the rapid development and widespread application of electric vehicles(EVs)around the world,the wireless power transfer(WPT)technology is also accelerating for commercial applications in EV wireless charging(EV-WPT)because of its high reliability,safety,and convenience,especially high suitability for the future self-driving scenario.Foreign object detection(FOD),mainly including metal object detection and living object detection,is required urgently and timely for the practical application of EV-WPT technology to ensure electromagnetic safety.In the last decade,especially in the past three years,many pieces of research on FOD have been reported.This article reviews FOD state-of-the-art technology for EV-WPT and compares the pros and cons of different approaches in terms of sensitivity,reliability,adaptability,complexity,and cost.Future challenges for research and development are also discussed to encourage commercialisation of EV-WPT technique.