期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Effect of Non-Contact Conditions in a Splinted Fixed Partial Denture on the Load Sharing Mechanism: A Finite Element Study 被引量:3
1
作者 M. Z. Bendjaballah 《Journal of Bionic Engineering》 SCIE EI CSCD 2012年第3期336-342,共7页
A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while t... A computer-aided design model for a fixed partial denture was constructed and used in a finite element analysis to study the overall load sharing mechanism between the fixed partial denture and oral structures while the denture base rested on the al- veolar ridge. To investigate the consequences of non-contact conditions, three additional models were generated incorporating a uniform clearance of 0.125 mm, 0.25 mm, and 0.5 mm, respectively. A 100 N static load located at the free end of the prosthesis was applied while the distal portion of the jaw was set fixed. The results show that whilst releasing the ridge almost entirely, the presence of the clearance drastically increased the load on the splinting teeth. A pull-out force on the canine tooth of about 44 N was computed, accompanied by a mesio-distal moment of about 500 N.cm. The combination of which was similar to the tooth extraction maneuver performed by the dentist. In contrast, the second premolar was found to bear a push-in force of almost 115 N. The first molar, though barely solicited in the contact condition, became substantially loaded in non-contact conditions, which validates the choice of sacrificing three teeth to support the denture. 展开更多
关键词 finite element analysis splinted fixed partial denture hygienic space load transfer mechanism contact problem
原文传递
Thermal-structural analysis of regeneratively-cooled thrust chamber wall in reusable LOX/Methane rocket engines 被引量:6
2
作者 Jiawen SONG Bing SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1043-1053,共11页
To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a ... To predict the thermal and structural responses of the thrust chamber wall under cyclic work,a 3-D fluid-structural coupling computational methodology is developed.The thermal and mechanical loads are determined by a validated 3-D finite volume fluid-thermal coupling computational method.With the specified loads,the nonlinear thermal-structural finite element analysis is applied to obtaining the 3-D thermal and structural responses.The Chaboche nonlinear kinematic hardening model calibrated by experimental data is adopted to predict the cyclic plastic behavior of the inner wall.The methodology is further applied to the thrust chamber of LOX/Methane rocket engines.The results show that both the maximum temperature at hot run phase and the maximum circumferential residual strain of the inner wall appear at the convergent part of the chamber.Structural analysis for multiple work cycles reveals that the failure of the inner wall may be controlled by the low-cycle fatigue when the Chaboche model parameter c3= 0,and the damage caused by the thermal-mechanical ratcheting of the inner wall cannot be ignored when c3〉 0.The results of sensitivity analysis indicate that mechanical loads have a strong influence on the strains in the inner wall. 展开更多
关键词 Rocket engine Thrust chamber Regenerative cooling Heat transfer Mechanical load Cyclic plasticity Ratcheting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部