In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su...In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.展开更多
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s...Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.展开更多
With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit p...With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers.展开更多
To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM an...To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.展开更多
Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactio...Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.展开更多
Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduli...Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduling plan of regional charging load,which can be derived to realize the optimal vehicle to grid benefit.In this paper,a regional-level EV ultra STLF method is proposed and discussed.The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles,and then constructed by our collected EV charging transactiondata in thefield.Secondly,these usagedegrees are combinedwithhistorical charging loadvalues toform the inputmatrix for the deep learning based load predictionmodel.Finally,long short-termmemory(LSTM)neural network is used to construct EV charging load forecastingmodel,which is trained by the formed inputmatrix.The comparison experiment proves that the proposed method in this paper has higher prediction accuracy compared with traditionalmethods.In addition,load characteristic index for the fluctuation of adjacent day load and adjacent week load are proposed by us,and these fluctuation factors are used to assess the prediction accuracy of the EV charging load,together with the mean absolute percentage error(MAPE).展开更多
Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consump...Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable,cheap,and easily available sources of energy.Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions.But the integration of distributed energy sources and increase in electric demand enhance instability in the grid.Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness and power quality of the grid.Electrical load forecasting in advance on the basic historical data modelling plays a crucial role in peak electrical demand control,reinforcement of the grid demand,and generation balancing with cost reduction.But accurate forecasting of electrical data is a very challenging task due to the nonstationary and nonlinearly nature of the data.Machine learning and artificial intelligence have recognized more accurate and reliable load forecastingmethods based on historical load data.The purpose of this study is to model the electrical load of Jajpur,Orissa Grid for forecasting of load using regression type machine learning algorithms Gaussian process regression(GPR).The historical electrical data and whether data of Jajpur is taken for modelling and simulation and the data is decided in such a way that the model will be considered to learn the connection among past,current,and future dependent variables,factors,and the relationship among data.Based on this modelling of data the network will be able to forecast the peak load of the electric grid one day ahead.The study is very helpful in grid stability and peak load control management.展开更多
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne...Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.展开更多
An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering met...An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.展开更多
Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is ...Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.展开更多
Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be i...Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load.展开更多
The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these t...The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these types of buildings have minimal consideration in the ongoing energy efficiency applications.This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks.Therefore,this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh,Saudi Arabia.In this study,and by harvesting the load consumption of the mosque and meteorological datasets,the performance of four forecasting algorithms is investigated,namely Artificial Neural Network and Support Vector Regression(SVR)based on three kernel functions:Radial Basis(RB),Polynomial,and Linear.In addition,this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes.For the mosque load,the(SVR-RB)with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE,nRMSE,MAE,and nMAE values of 4.207 kW,2.522%,2.938 kW,and 1.761%,respectively.展开更多
The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this...The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.展开更多
In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ...In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.展开更多
The increasingly large number of electric vehicles(EVs)has resulted in a growing concern for EV charging station load prediction for the purpose of comprehensively evaluating the influence of the charging load on dist...The increasingly large number of electric vehicles(EVs)has resulted in a growing concern for EV charging station load prediction for the purpose of comprehensively evaluating the influence of the charging load on distribution networks.To address this issue,an EV charging station load predictionmethod is proposed in coupled urban transportation and distribution networks.Firstly,a finer dynamic urban transportation network model is formulated considering both nodal and path resistance.Then,a finer EV power consumption model is proposed by considering the influence of traffic congestion and ambient temperature.Thirdly,the Monte Carlo method is applied to predict the distribution of EVcharging station load based on the proposed dynamic urban transportation network model and finer EV power consumption model.Moreover,a dynamic charging pricing scheme for EVs is devised based on the EV charging station load requirements and the maximum thresholds to ensure the security operation of distribution networks.Finally,the validity of the proposed dynamic urban transportation model was verified by accurately estimating five sets of test data on travel time by contrast with the BPR model.The five groups of travel time prediction results showed that the average absolute percentage errors could be improved from 32.87%to 37.21%compared to the BPR model.Additionally,the effectiveness of the proposed EV charging station load prediction method was demonstrated by four case studies in which the prediction of EV charging load was improved from27.2 to 31.49MWh by considering the influence of ambient temperature and speed on power energy consumption.展开更多
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are comput...According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.展开更多
Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input...Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.展开更多
In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was...In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision.展开更多
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ...Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.62063016).
文摘In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.
基金the Shanghai Rising-Star Program(No.22QA1403900)the National Natural Science Foundation of China(No.71804106)the Noncarbon Energy Conversion and Utilization Institute under the Shanghai Class IV Peak Disciplinary Development Program.
文摘Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons.
基金supported by Science and Technology Project of State Grid Zhejiang Corporation of China“Research on State Estimation and Risk Assessment Technology for New Power Distribution Networks for Widely Connected Distributed Energy”(5211JX22002D).
文摘With a further increase in energy flexibility for customers,short-term load forecasting is essential to provide benchmarks for economic dispatch and real-time alerts in power grids.The electrical load series exhibit periodic patterns and share high associations with metrological data.However,current studies have merely focused on point-wise models and failed to sufficiently investigate the periodic patterns of load series,which hinders the further improvement of short-term load forecasting accuracy.Therefore,this paper improved Autoformer to extract the periodic patterns of load series and learn a representative feature from deep decomposition and reconstruction.In addition,a novel multi-factor attention mechanism was proposed to handle multi-source metrological and numerical weather prediction data and thus correct the forecasted electrical load.The paper also compared the proposed model with various competitive models.As the experimental results reveal,the proposed model outperforms the benchmark models and maintains stability on various types of load consumers.
基金supported by National Natural Science Foundation of China(NSFC)(62103126).
文摘To fully exploit the rich characteristic variation laws of an integrated energy system(IES)and further improve the short-term load-forecasting accuracy,a load-forecasting method is proposed for an IES based on LSTM and dynamic similar days with multi-features.Feature expansion was performed to construct a comprehensive load day covering the load and meteorological information with coarse and fine time granularity,far and near time periods.The Gaussian mixture model(GMM)was used to divide the scene of the comprehensive load day,and gray correlation analysis was used to match the scene with the coarse time granularity characteristics of the day to be forecasted.Five typical days with the highest correlation with the day to be predicted in the scene were selected to construct a“dynamic similar day”by weighting.The key features of adjacent days and dynamic similar days were used to forecast multi-loads with fine time granularity using LSTM.Comparing the static features as input and the selection method of similar days based on non-extended single features,the effectiveness of the proposed prediction method was verified.
基金support provided in part by the National Key Research and Development Program of China (No.2020YFB1005804)in part by the National Natural Science Foundation of China under Grant 61632009+1 种基金in part by the High-Level Talents Program of Higher Education in Guangdong Province under Grant 2016ZJ01in part by the NCRA-017,NUST,Islamabad.
文摘Short-term load forecasting (STLF) is part and parcel of theefficient working of power grid stations. Accurate forecasts help to detect thefault and enhance grid reliability for organizing sufficient energy transactions.STLF ranges from an hour ahead prediction to a day ahead prediction. Variouselectric load forecasting methods have been used in literature for electricitygeneration planning to meet future load demand. A perfect balance regardinggeneration and utilization is still lacking to avoid extra generation and misusageof electric load. Therefore, this paper utilizes Levenberg–Marquardt(LM) based Artificial Neural Network (ANN) technique to forecast theshort-term electricity load for smart grids in a much better, more precise,and more accurate manner. For proper load forecasting, we take the mostcritical weather parameters along with historical load data in the form of timeseries grouped into seasons, i.e., winter and summer. Further, the presentedmodel deals with each season’s load data by splitting it into weekdays andweekends. The historical load data of three years have been used to forecastweek-ahead and day-ahead load demand after every thirty minutes makingload forecast for a very short period. The proposed model is optimized usingthe Levenberg-Marquardt backpropagation algorithm to achieve results withcomparable statistics. Mean Absolute Percent Error (MAPE), Root MeanSquared Error (RMSE), R2, and R are used to evaluate the model. Comparedwith other recent machine learning-based mechanisms, our model presentsthe best experimental results with MAPE and R2 scores of 1.3 and 0.99,respectively. The results prove that the proposed LM-based ANN modelperforms much better in accuracy and has the lowest error rates as comparedto existing work.
基金supported by National Key R&D Program of China(No.2021YFB2601602).
文摘Electric vehicle(EV)charging load is greatly affected by many traffic factors,such as road congestion.Accurate ultra short-term load forecasting(STLF)results for regional EV charging load are important to the scheduling plan of regional charging load,which can be derived to realize the optimal vehicle to grid benefit.In this paper,a regional-level EV ultra STLF method is proposed and discussed.The usage degree of all charging piles is firstly defined by us based on the usage frequency of charging piles,and then constructed by our collected EV charging transactiondata in thefield.Secondly,these usagedegrees are combinedwithhistorical charging loadvalues toform the inputmatrix for the deep learning based load predictionmodel.Finally,long short-termmemory(LSTM)neural network is used to construct EV charging load forecastingmodel,which is trained by the formed inputmatrix.The comparison experiment proves that the proposed method in this paper has higher prediction accuracy compared with traditionalmethods.In addition,load characteristic index for the fluctuation of adjacent day load and adjacent week load are proposed by us,and these fluctuation factors are used to assess the prediction accuracy of the EV charging load,together with the mean absolute percentage error(MAPE).
文摘Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable,cheap,and easily available sources of energy.Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions.But the integration of distributed energy sources and increase in electric demand enhance instability in the grid.Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness and power quality of the grid.Electrical load forecasting in advance on the basic historical data modelling plays a crucial role in peak electrical demand control,reinforcement of the grid demand,and generation balancing with cost reduction.But accurate forecasting of electrical data is a very challenging task due to the nonstationary and nonlinearly nature of the data.Machine learning and artificial intelligence have recognized more accurate and reliable load forecastingmethods based on historical load data.The purpose of this study is to model the electrical load of Jajpur,Orissa Grid for forecasting of load using regression type machine learning algorithms Gaussian process regression(GPR).The historical electrical data and whether data of Jajpur is taken for modelling and simulation and the data is decided in such a way that the model will be considered to learn the connection among past,current,and future dependent variables,factors,and the relationship among data.Based on this modelling of data the network will be able to forecast the peak load of the electric grid one day ahead.The study is very helpful in grid stability and peak load control management.
基金supported by the Major Project of Basic and Applied Research in Guangdong Universities (2017WZDXM012)。
文摘Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.
基金supported by the National Natural Science Foundation of China under Grant 51777193.
文摘An improved fuzzy time series algorithmbased on clustering is designed in this paper.The algorithm is successfully applied to short-term load forecasting in the distribution stations.Firstly,the K-means clustering method is used to cluster the data,and the midpoint of two adjacent clustering centers is taken as the dividing point of domain division.On this basis,the data is fuzzed to form a fuzzy time series.Secondly,a high-order fuzzy relation with multiple antecedents is established according to the main measurement indexes of power load,which is used to predict the short-term trend change of load in the distribution stations.Matlab/Simulink simulation results show that the load forecasting errors of the typical fuzzy time series on the time scale of one day and one week are[−50,20]and[−50,30],while the load forecasting errors of the improved fuzzy time series on the time scale of one day and one week are[−20,15]and[−20,25].It shows that the fuzzy time series algorithm improved by clustering improves the prediction accuracy and can effectively predict the short-term load trend of distribution stations.
文摘Frequency deviation has to be controlled in power generation units when there arefluctuations in system frequency.With several renewable energy sources,wind energy forecasting is majorly focused in this work which is a tough task due to its variations and uncontrollable nature.Whenever there is a mismatch between generation and demand,the frequency deviation may arise from the actual frequency 50 Hz(in India).To mitigate the frequency deviation issue,it is necessary to develop an effective technique for better frequency control in wind energy systems.In this work,heuristic Fuzzy Logic Based Controller(FLC)is developed for providing an effective frequency control support by modeling the complex behavior of the system to enhance the load forecasting in wind based hybrid power systems.Frequency control is applied to reduce the frequency deviation due tofluctuations and load prediction information using ANN(Artificial Neural Network)and SVM(Support Vector Machine)learning models.The performance analysis of the proposed method is done with different machine learning based approaches.The forecasting assessment is done over various climates with the aim to decrease the prediction errors and to demote the forecasting accuracy.Simulation results show that the Mean Absolute Percentage Error(MAPE),Root Mean Square Error(RMSE)and Normalized Mean Absolute Error(NMAE)values are scaled down by 41.1%,9.9%and 23.1%respectively in the proposed method while comparing with existing wavelet and BPN based approach.
基金Funding Statement:The researchers would like to thank the Deanship of Scientific Research,Qassim University for funding the publication of this project.
文摘Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load.
基金The author extends his appreciation to the Deputyship for Research&Innovation,Ministry of Education and Qassim University,Saudi Arabia for funding this research work through the Project Number(QU-IF-4-3-3-30013).
文摘The tendency toward achieving more sustainable and green buildings turned several passive buildings into more dynamic ones.Mosques are the type of buildings that have a unique energy usage pattern.Nevertheless,these types of buildings have minimal consideration in the ongoing energy efficiency applications.This is due to the unpredictability in the electrical consumption of the mosques affecting the stability of the distribution networks.Therefore,this study addresses this issue by developing a framework for a short-term electricity load forecast for a mosque load located in Riyadh,Saudi Arabia.In this study,and by harvesting the load consumption of the mosque and meteorological datasets,the performance of four forecasting algorithms is investigated,namely Artificial Neural Network and Support Vector Regression(SVR)based on three kernel functions:Radial Basis(RB),Polynomial,and Linear.In addition,this research work examines the impact of 13 different combinations of input attributes since selecting the optimal features has a major influence on yielding precise forecasting outcomes.For the mosque load,the(SVR-RB)with eleven features appeared to be the best forecasting model with the lowest forecasting errors metrics giving RMSE,nRMSE,MAE,and nMAE values of 4.207 kW,2.522%,2.938 kW,and 1.761%,respectively.
基金The authors extend their appreciation to the Deputy ship for the Research&innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/18432).
文摘The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.
文摘In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy.
基金supported by the National Natural Science Foundation of China(No.U22B20105).
文摘The increasingly large number of electric vehicles(EVs)has resulted in a growing concern for EV charging station load prediction for the purpose of comprehensively evaluating the influence of the charging load on distribution networks.To address this issue,an EV charging station load predictionmethod is proposed in coupled urban transportation and distribution networks.Firstly,a finer dynamic urban transportation network model is formulated considering both nodal and path resistance.Then,a finer EV power consumption model is proposed by considering the influence of traffic congestion and ambient temperature.Thirdly,the Monte Carlo method is applied to predict the distribution of EVcharging station load based on the proposed dynamic urban transportation network model and finer EV power consumption model.Moreover,a dynamic charging pricing scheme for EVs is devised based on the EV charging station load requirements and the maximum thresholds to ensure the security operation of distribution networks.Finally,the validity of the proposed dynamic urban transportation model was verified by accurately estimating five sets of test data on travel time by contrast with the BPR model.The five groups of travel time prediction results showed that the average absolute percentage errors could be improved from 32.87%to 37.21%compared to the BPR model.Additionally,the effectiveness of the proposed EV charging station load prediction method was demonstrated by four case studies in which the prediction of EV charging load was improved from27.2 to 31.49MWh by considering the influence of ambient temperature and speed on power energy consumption.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.
基金Project(70671039) supported by the National Natural Science Foundation of China
文摘According to the chaotic and non-linear characters of power load data,the time series matrix is established with the theory of phase-space reconstruction,and then Lyapunov exponents with chaotic time series are computed to determine the time delay and the embedding dimension.Due to different features of the data,data mining algorithm is conducted to classify the data into different groups.Redundant information is eliminated by the advantage of data mining technology,and the historical loads that have highly similar features with the forecasting day are searched by the system.As a result,the training data can be decreased and the computing speed can also be improved when constructing support vector machine(SVM) model.Then,SVM algorithm is used to predict power load with parameters that get in pretreatment.In order to prove the effectiveness of the new model,the calculation with data mining SVM algorithm is compared with that of single SVM and back propagation network.It can be seen that the new DSVM algorithm effectively improves the forecast accuracy by 0.75%,1.10% and 1.73% compared with SVM for two random dimensions of 11-dimension,14-dimension and BP network,respectively.This indicates that the DSVM gains perfect improvement effect in the short-term power load forecasting.
基金Project(07JA790092) supported by the Research Grants from Humanities and Social Science Program of Ministry of Education of ChinaProject(10MR44) supported by the Fundamental Research Funds for the Central Universities in China
文摘Firstly,general regression neural network(GRNN) was used for variable selection of key influencing factors of residential load(RL) forecasting.Secondly,the key influencing factors chosen by GRNN were used as the input and output terminals of urban and rural RL for simulating and learning.In addition,the suitable parameters of final model were obtained through applying the evidence theory to combine the optimization results which were calculated with the PSO method and the Bayes theory.Then,the model of PSO-Bayes least squares support vector machine(PSO-Bayes-LS-SVM) was established.A case study was then provided for the learning and testing.The empirical analysis results show that the mean square errors of urban and rural RL forecast are 0.02% and 0.04%,respectively.At last,taking a specific province RL in China as an example,the forecast results of RL from 2011 to 2015 were obtained.
基金Projects(70572090, 70373017) supported by the National Natural Science Foundation of China
文摘In order to accurately forecast the load of power system and enhance the stability of the power network, a novel unascertained mathematics based recurrent neural network (UMRNN) for power intelligence center (PIC) was created through three steps. First, by combining with the general project uncertain element transmission theory (GPUET), the basic definitions of stochastic, fuzzy, and grey uncertain elements were given based on the principal types of uncertain information. Second, a power dynamic alliance including four sectors: generation sector, transmission sector, distribution sector and customers was established. The key factors were amended according to the four transmission topologies of uncertain elements, thus the new factors entered the power intelligence center as the input elements. Finally, in the intelligence handing background of PIC, by performing uncertain and recursive process to the input values of network, and combining unascertained mathematics, the novel load forecasting model was built. Three different approaches were put forward to forecast an eastern regional power grid load in China. The root mean square error (ERMS) demonstrates that the forecasting accuracy of the proposed model UMRNN is 3% higher than that of BP neural network (BPNN), and 5% higher than that of autoregressive integrated moving average (ARIMA). Besides, an example also shows that the average relative error of the first quarter of 2008 forecasted by UMRNN is only 2.59%, which has high precision.
文摘Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality.