In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal ...In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
This paper gives the local regularity result for solutions to obstacle problems of A-harmonic equation divA(x, ξu(x)) = 0, |A.(x,ξ)|≈|?|p-1, when 1 < p < n and the obstacle function (?)≥0.
Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficul...Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.展开更多
A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through ap...A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.展开更多
This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local ...This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.展开更多
In distributed cloud storage systems, inevitably there exist multiple node failures at the same time. The existing methods of regenerating codes, including minimum storage regenerating(MSR) codes and minimum bandwidth...In distributed cloud storage systems, inevitably there exist multiple node failures at the same time. The existing methods of regenerating codes, including minimum storage regenerating(MSR) codes and minimum bandwidth regenerating(MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage regenerating(LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group(4, 2) or(5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. Theoretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.展开更多
In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component i...In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary, while the other is a Kirchhoff type wave equation with nonlinear memory.展开更多
Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a f...Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.展开更多
We obtain a local regularity result for solutions to kφ,θ-obstacle problem of A-harmonic equation divA(x, u(x), ↓△u(x)) = 0, where .A : Ω ×R × Rn → Rn is aCarath^odory function satisfying some c...We obtain a local regularity result for solutions to kφ,θ-obstacle problem of A-harmonic equation divA(x, u(x), ↓△u(x)) = 0, where .A : Ω ×R × Rn → Rn is aCarath^odory function satisfying some coercivity and growth conditions with the naturalexponent 1 〈 p 〈 n, the obstacle function φ≥ 0, and the boundary data θ ∈ W1mp(Ω).展开更多
To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave deco...To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave decomposition. The spatial spectrum function is calculated by minimum variance distortionless response (MVDR) to scan the three-dimensional space. The peak values of the spectrum function correspond to the directions of multiple sound sources. A diagonal loading method is adopted to solve the ill-conditioned cross spectrum matrix of the received signals. The loading level depends on the alleviation of the ill-condition of the matrix and the accuracy of the inverse calculation. Compared with plane wave decomposition method, our proposed localization algorithm can acquire high spatial resolution and better estimation for multiple sound source directions, especially in low signal to noise ratio (SNR).展开更多
A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential proble...Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.展开更多
The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of th...The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.展开更多
In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials, one component bei...In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials, one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary, while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory展开更多
In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that th...In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method.展开更多
This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can...This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms.展开更多
Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector...Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.展开更多
The bottleneck analysis of the minimum cost problem for the generalized network (MCPGN) is discussed. The analysis is based on the network simplex algorithm, which gains negative cost graphs by constructing augmented ...The bottleneck analysis of the minimum cost problem for the generalized network (MCPGN) is discussed. The analysis is based on the network simplex algorithm, which gains negative cost graphs by constructing augmented forest structure, then augments flows on the negative cost graphs until the optimal revolution is gained. Bottleneck structure is presented after analyzing the augmented forest structure. The negative cost augmented graphs are constructed with the bottleneck structure. The arcs that block the negative cost augmented graph are the elements of the bottleneck. The bottleneck analysis for the generalized circulation problem, the minimum circulation problem and the circulation problem are discussed respectively as the basal problems, then that for MCPGN is achieved. An example is presented at the end.展开更多
The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the correspondi...The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the corresponding linear problem,it is proved that if the initial function u0 belongs to H^5(R) and s〉1/4,then the Cauchy problem has a unique solution in C([-T,T],H^5(R)) for some T〉0.展开更多
基金supported in part by the Science and Technology Project of Yunnan Tobacco Industrial Company under Grant JB2022YL02in part by the Natural Science Foundation of Henan Province of China under Grant 242300421413in part by the Henan Province Science and Technology Research Projects under Grants 242102110334 and 242102110375.
文摘In practical engineering,multi-objective optimization often encounters situations where multiple Pareto sets(PS)in the decision space correspond to the same Pareto front(PF)in the objective space,known as Multi-Modal Multi-Objective Optimization Problems(MMOP).Locating multiple equivalent global PSs poses a significant challenge in real-world applications,especially considering the existence of local PSs.Effectively identifying and locating both global and local PSs is a major challenge.To tackle this issue,we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded,promising regions and regulate the number of offspring in areas that have been thoroughly explored.This approach achieves a balanced trade-off between exploration and exploitation.Furthermore,we present an interval allocation strategy that adaptively assigns fitness levels to each antibody.This strategy ensures a broader survival margin for solutions in their initial stages and progressively amplifies the differences in individual fitness values as the population matures,thus fostering better population convergence.Additionally,we incorporate a multi-population mechanism that precisely manages each subpopulation through the interval allocation strategy,ensuring the preservation of both global and local PSs.Experimental results on 21 test problems,encompassing both global and local PSs,are compared with eight state-of-the-art multimodal multi-objective optimization algorithms.The results demonstrate the effectiveness of our proposed algorithm in simultaneously identifying global Pareto sets and locally high-quality PSs.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
文摘This paper gives the local regularity result for solutions to obstacle problems of A-harmonic equation divA(x, ξu(x)) = 0, |A.(x,ξ)|≈|?|p-1, when 1 < p < n and the obstacle function (?)≥0.
基金Project supported by the National 973 Program (No.2004CB719402), the National Natural Science Foundation of China (No. 10372030)the Open Research Projects supported by the Project Fund of the Hubei Province Key Lab of Mechanical Transmission & Manufacturing Engineering Wuhan University of Science & Technology (No.2003A16).
文摘Nonlinear formulations of the meshless local Petrov-Galerkin (MLPG) method are presented for geometrically nonlinear problems. The method requires no mesh in computation and therefore avoids mesh distortion difficulties in the large deformation analysis. The essential boundary conditions in the present formulation axe imposed by a penalty method. An incremental and iterative solution procedure is used to solve geometrically nonlinear problems. Several examples are presented to demonstrate the effectiveness of the method in geometrically nonlinear problems analysis. Numerical results show that the MLPG method is an effective one and that the values of the unknown variable are quite accurate.
文摘A novel robot navigation algorithm with global path generation capability is presented. Local minimum is a most intractable but is an encountered frequently problem in potential field based robot navigation.Through appointing appropriately some virtual local targets on the journey, it can be solved effectively. The key concept employed in this algorithm are the rules that govern when and how to appoint these virtual local targets. When the robot finds itself in danger of local minimum, a virtual local target is appointed to replace the global goal temporarily according to the rules. After the virtual target is reached, the robot continues on its journey by heading towards the global goal. The algorithm prevents the robot from running into local minima anymore. Simulation results showed that it is very effective in complex obstacle environments.
基金partially supported by the NSFC(10871134)the AHRDIHL Project of Beijing Municipality (PHR201006107)
文摘This paper is concerned with the free boundary value problem for multidimensional Navier-Stokes equations with density-dependent viscosity where the flow density vanishes continuously across the free boundary. Local (in time) existence of a weak solution is established; in particular, the density is positive and the solution is regular away from the free boundary.
基金supported in part by the National Natural Science Foundation of China (61640006, 61572188)the Natural Science Foundation of Shaanxi Province, China (2015JM6307, 2016JQ6011)the project of science and technology of Xi’an City (2017088CG/RC051(CADX002))
文摘In distributed cloud storage systems, inevitably there exist multiple node failures at the same time. The existing methods of regenerating codes, including minimum storage regenerating(MSR) codes and minimum bandwidth regenerating(MBR) codes, are mainly to repair one single or several failed nodes, unable to meet the repair need of distributed cloud storage systems. In this paper, we present locally minimum storage regenerating(LMSR) codes to recover multiple failed nodes at the same time. Specifically, the nodes in distributed cloud storage systems are divided into multiple local groups, and in each local group(4, 2) or(5, 3) MSR codes are constructed. Moreover, the grouping method of storage nodes and the repairing process of failed nodes in local groups are studied. Theoretical analysis shows that LMSR codes can achieve the same storage overhead as MSR codes. Furthermore, we verify by means of simulation that, compared with MSR codes, LMSR codes can reduce the repair bandwidth and disk I/O overhead effectively.
文摘In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physi- cally different types of materials, one component is a Kirchhoff type wave equation with nonlinear time dependent localized dissipation which is effective only on a neighborhood of certain part of the boundary, while the other is a Kirchhoff type wave equation with nonlinear memory.
文摘Molecular programming is applied to minimum spanning problem whose solution requires encoding of real values in DNA strands. A new encoding scheme is proposed for real values that is biologically plausible and has a fixed code length. According to the characteristics of the problem, a DNA algorithm solving the minimum spanning tree problem is given. The effectiveness of the proposed method is verified by simulation. The advantages and disadvantages of this algorithm are discussed.
基金supported by NSF of Hebei Province (07M003)supported by NSFC (10771195)NSF of Zhejiang Province(Y607128)
文摘We obtain a local regularity result for solutions to kφ,θ-obstacle problem of A-harmonic equation divA(x, u(x), ↓△u(x)) = 0, where .A : Ω ×R × Rn → Rn is aCarath^odory function satisfying some coercivity and growth conditions with the naturalexponent 1 〈 p 〈 n, the obstacle function φ≥ 0, and the boundary data θ ∈ W1mp(Ω).
基金Project supported by the National Natural Science Foundation of China (Grant No.61001160)the Doctoral Foundation of Ministry of Education (Grant No.20093108120018)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave decomposition. The spatial spectrum function is calculated by minimum variance distortionless response (MVDR) to scan the three-dimensional space. The peak values of the spectrum function correspond to the directions of multiple sound sources. A diagonal loading method is adopted to solve the ill-conditioned cross spectrum matrix of the received signals. The loading level depends on the alleviation of the ill-condition of the matrix and the accuracy of the inverse calculation. Compared with plane wave decomposition method, our proposed localization algorithm can acquire high spatial resolution and better estimation for multiple sound source directions, especially in low signal to noise ratio (SNR).
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11102125)
文摘Based on the complex variable moving least-square(CVMLS) approximation and a local symmetric weak form,the complex variable meshless local Petrov-Galerkin(CVMLPG) method of solving two-dimensional potential problems is presented in this paper.In the present formulation,the trial function of a two-dimensional problem is formed with a one-dimensional basis function.The number of unknown coefficients in the trial function of the CVMLS approximation is less than that in the trial function of the moving least-square(MLS) approximation.The essential boundary conditions are imposed by the penalty method.The main advantage of this approach over the conventional meshless local Petrov-Galerkin(MLPG) method is its computational efficiency.Several numerical examples are presented to illustrate the implementation and performance of the present CVMLPG method.
文摘The optimal solution of the multi-constrained QoS multicast routing problem is a tree-like hierarchical structure in the topology graph. This multicast route contains a feasible path from the source node to each of the destinations with respect to a set of QoS constraints while minimizing a cost function. Often, it is a tree. In other cases, the hierarchies can return several times to nodes and links of the topology graph. Similarly to Steiner problem, finding such a structure is an NP-hard problem. The usual tree and topology enumeration algorithms applied for the Steiner problem cannot be used to solve the addressed problem. In this paper, we propose an exact algorithm based on the Branch and Bound principle and improved by the Lookahead technique. We show relevant properties of the optimum hierarchy permitting efficient pruning of the search space. To our knowledge, our paper is the first to propose an exact algorithm for this non-trivial multi-constrained optimal multicast route computation. Simulations illustrate the efficiency of the proposed pruning operations. The analysis of the execution time shows that in simple topologies and with tight QoS constraints the exact algorithm requires relatively little execution time. With loose constraints the computation time cannot be tolerated even for off-line route computation. In these cases, the solution is close to a Steiner tree and heuristics can be applied. These results can serve as basis for the design of efficient, polynomial-time routing algorithms.
文摘In this article, we consider the global existence and decay rates of solutions for the transmission problem of Kirchhoff type wave equations consisting of two physically different types of materials, one component being a Kirchhoff type wave equation with time dependent localized dissipation which is effective only on a neighborhood of certain part of boundary, while the other being a Kirchhoff type viscoelastic wave equation with nonlinear memory
基金Supported by National Natural Science Foundation of China(11571002,11461046)Natural Science Foundation of Jiangxi Province,China(20151BAB211013,20161ACB21005)+2 种基金Science and Technology Project of Jiangxi Provincial Department of Education,China(150172)Science Foundation of China Academy of Engineering Physics(2015B0101021)Defense Industrial Technology Development Program(B1520133015)
文摘In this paper,the minimal dissipation local discontinuous Galerkin method is studied to solve the elliptic interface problems in two-dimensional domains.The interface may be arbitrary smooth curves.It is shown that the error estimates in L;-norm for the solution and the flux are O(h;|log h|)and O(h|log h|;),respectively.In numerical experiments,the successive substitution iterative methods are used to solve the LDG schemes.Numerical results verify the efficiency and accuracy of the method.
文摘This paper presents a parallel composite local search algorithm based on multiple search neighborhoods to solve a special kind of timetable problem. The new algorithm can also effectively solve those problems that can be solved by general local search algorithms. Experimental results show that the new algorithm can generate better solutions than general local search algorithms.
文摘Some classes of generalized vector quasi-equilibrium problems ( in short, GVQEP) are introduced and studied in locally G-convex spaces which includes most of generalized vector equilibrium problems; generalized vector variational inequality problems, quasi-equilibrium problems and quasi-variational inequality problems as special cases. First, an equilibrium existence theorem for one person games is proved in locally G-convex spaces.. As applications, some new existence theorems of solutions for the GVQEP are established in noncompact locally G-convex spaces. These results and argument methods are new and completely different from that in recent literature.
基金Supported by the National Natural Science Foundation of China (No. 60174046).
文摘The bottleneck analysis of the minimum cost problem for the generalized network (MCPGN) is discussed. The analysis is based on the network simplex algorithm, which gains negative cost graphs by constructing augmented forest structure, then augments flows on the negative cost graphs until the optimal revolution is gained. Bottleneck structure is presented after analyzing the augmented forest structure. The negative cost augmented graphs are constructed with the bottleneck structure. The arcs that block the negative cost augmented graph are the elements of the bottleneck. The bottleneck analysis for the generalized circulation problem, the minimum circulation problem and the circulation problem are discussed respectively as the basal problems, then that for MCPGN is achieved. An example is presented at the end.
文摘The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the corresponding linear problem,it is proved that if the initial function u0 belongs to H^5(R) and s〉1/4,then the Cauchy problem has a unique solution in C([-T,T],H^5(R)) for some T〉0.