期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Adaptive Local Outlier Probability for Dynamic Process Monitoring 被引量:2
1
作者 马玉鑫 侍洪波 王梦灵 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第7期820-827,共8页
Complex industrial processes often have multiple operating modes and present time-varying behavior. The data in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerically efficie... Complex industrial processes often have multiple operating modes and present time-varying behavior. The data in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerically efficient movingwindow local outlier probability algorithm is proposed, lies key feature is the capability to handle complex data distributions and incursive operating condition changes including slow dynamic variations and instant mode shifts. First, a two-step adaption approach is introduced and some designed updating rules are applied to keep the monitoring model up-to-date. Then, a semi-supervised monitoring strategy is developed with an updating switch rule to deal with mode changes. Based on local probability models, the algorithm has a superior ability in detecting faulty conditions and fast adapting to slow variations and new operating modes. Finally, the utility of the proposed method is demonstrated with a numerical example and a non-isothermal continuous stirred tank reactor. 展开更多
关键词 TIME-VARYING Complex data distribution local outlier probability MULTI-MODE Fault detection
下载PDF
Anomaly IoT Node Detection Based on Local Outlier Factor and Time Series 被引量:2
2
作者 Fang Wang Zhe Wei Xu Zuo 《Computers, Materials & Continua》 SCIE EI 2020年第8期1063-1073,共11页
The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes ... The heterogeneous nodes in the Internet of Things(IoT)are relatively weak in the computing power and storage capacity.Therefore,traditional algorithms of network security are not suitable for the IoT.Once these nodes alternate between normal behavior and anomaly behavior,it is difficult to identify and isolate them by the network system in a short time,thus the data transmission accuracy and the integrity of the network function will be affected negatively.Based on the characteristics of IoT,a lightweight local outlier factor detection method is used for node detection.In order to further determine whether the nodes are an anomaly or not,the varying behavior of those nodes in terms of time is considered in this research,and a time series method is used to make the system respond to the randomness and selectiveness of anomaly behavior nodes effectively in a short period of time.Simulation results show that the proposed method can improve the accuracy of the data transmitted by the network and achieve better performance. 展开更多
关键词 local outlier factor time series Internet of Things anomaly node detection
下载PDF
Anomalous Cell Detection with Kernel Density-Based Local Outlier Factor 被引量:2
3
作者 Miao Dandan Qin Xiaowei Wang Weidong 《China Communications》 SCIE CSCD 2015年第9期64-75,共12页
Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical ... Since data services are penetrating into our daily life rapidly, the mobile network becomes more complicated, and the amount of data transmission is more and more increasing. In this case, the traditional statistical methods for anomalous cell detection cannot adapt to the evolution of networks, and data mining becomes the mainstream. In this paper, we propose a novel kernel density-based local outlier factor(KLOF) to assign a degree of being an outlier to each object. Firstly, the notion of KLOF is introduced, which captures exactly the relative degree of isolation. Then, by analyzing its properties, including the tightness of upper and lower bounds, sensitivity of density perturbation, we find that KLOF is much greater than 1 for outliers. Lastly, KLOFis applied on a real-world dataset to detect anomalous cells with abnormal key performance indicators(KPIs) to verify its reliability. The experiment shows that KLOF can find outliers efficiently. It can be a guideline for the operators to perform faster and more efficient trouble shooting. 展开更多
关键词 data mining key performance indicators kernel density-based local outlier factor density perturbation anomalous cell detection
下载PDF
Online Capacitor Voltage Transformer Measurement Error State Evaluation Method Based on In-Phase Relationship and Abnormal Point Detection
4
作者 Yongqi Liu Wei Shi +2 位作者 Jiusong Hu Yantao Zhao Pang Wang 《Smart Grid and Renewable Energy》 2024年第1期34-48,共15页
The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the... The assessment of the measurement error status of online Capacitor Voltage Transformers (CVT) within the power grid is of profound significance to the equitable trade of electric energy and the secure operation of the power grid. This paper advances an online CVT error state evaluation method, anchored in the in-phase relationship and outlier detection. Initially, this method leverages the in-phase relationship to obviate the influence of primary side fluctuations in the grid on assessment accuracy. Subsequently, Principal Component Analysis (PCA) is employed to meticulously disentangle the error change information inherent in the CVT from the measured values and to compute statistics that delineate the error state. Finally, the Local Outlier Factor (LOF) is deployed to discern outliers in the statistics, with thresholds serving to appraise the CVT error state. Experimental results incontrovertibly demonstrate the efficacy of this method, showcasing its prowess in effecting online tracking of CVT error changes and conducting error state assessments. The discernible enhancements in reliability, accuracy, and sensitivity are manifest, with the assessment accuracy reaching an exemplary 0.01%. 展开更多
关键词 Capacitor Voltage Transformer Measurement Error Online Monitoring Principal Component Analysis local Outlier Factor
下载PDF
An Intelligent Early Warning Method of Press-Assembly Quality Based on Outlier Data Detection and Linear Regression
5
作者 XUE Shanliang LI Chen 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2020年第4期597-606,共10页
Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to d... Focusing on controlling the press-assembly quality of high-precision servo mechanism,an intelligent early warning method based on outlier data detection and linear regression is proposed.Linear regression is used to deal with the relationship between assembly quality and press-assembly process,then the mathematical model of displacement-force in press-assembly process is established and a qualified press-assembly force range is defined for assembly quality control.To preprocess the raw dataset of displacement-force in the press-assembly process,an improved local outlier factor based on area density and P weight(LAOPW)is designed to eliminate the outliers which will result in inaccuracy of the mathematical model.A weighted distance based on information entropy is used to measure distance,and the reachable distance is replaced with P weight.Experiments show that the detection efficiency of the algorithm is improved by 5.6 ms compared with the traditional local outlier factor(LOF)algorithm,and the detection accuracy is improved by about 2%compared with the local outlier factor based on area density(LAOF)algorithm.The application of LAOPW algorithm and the linear regression model shows that it can effectively carry out intelligent early warning of press-assembly quality of high precision servo mechanism. 展开更多
关键词 quality early warning outlier data detection linear regression local outlier factor based on area density and P weight(LAOPW) information entropy P weight
下载PDF
A Two-Level Approach based on Integration of Bagging and Voting for Outlier Detection
6
作者 Alican Dogan Derya Birant 《Journal of Data and Information Science》 CSCD 2020年第2期111-135,共25页
Purpose:The main aim of this study is to build a robust novel approach that is able to detect outliers in the datasets accurately.To serve this purpose,a novel approach is introduced to determine the likelihood of an ... Purpose:The main aim of this study is to build a robust novel approach that is able to detect outliers in the datasets accurately.To serve this purpose,a novel approach is introduced to determine the likelihood of an object to be extremely different from the general behavior of the entire dataset.Design/methodology/approach:This paper proposes a novel two-level approach based on the integration of bagging and voting techniques for anomaly detection problems.The proposed approach,named Bagged and Voted Local Outlier Detection(BV-LOF),benefits from the Local Outlier Factor(LOF)as the base algorithm and improves its detection rate by using ensemble methods.Findings:Several experiments have been performed on ten benchmark outlier detection datasets to demonstrate the effectiveness of the BV-LOF method.According to the results,the BV-LOF approach significantly outperformed LOF on 9 datasets of 10 ones on average.Research limitations:In the BV-LOF approach,the base algorithm is applied to each subset data multiple times with different neighborhood sizes(k)in each case and with different ensemble sizes(T).In our study,we have chosen k and T value ranges as[1-100];however,these ranges can be changed according to the dataset handled and to the problem addressed.Practical implications:The proposed method can be applied to the datasets from different domains(i.e.health,finance,manufacturing,etc.)without requiring any prior information.Since the BV-LOF method includes two-level ensemble operations,it may lead to more computational time than single-level ensemble methods;however,this drawback can be overcome by parallelization and by using a proper data structure such as R*-tree or KD-tree.Originality/value:The proposed approach(BV-LOF)investigates multiple neighborhood sizes(k),which provides findings of instances with different local densities,and in this way,it provides more likelihood of outlier detection that LOF may neglect.It also brings many benefits such as easy implementation,improved capability,higher applicability,and interpretability. 展开更多
关键词 Outlier detection local outlier factor Ensemble learning BAGGING VOTING
下载PDF
A novel thermal runaway warning method of lithium-ion batteries
7
作者 Rui Xiong Chenxu Wang Fengchun Sun 《iEnergy》 2023年第3期165-171,共7页
To improve the safety of electric vehicles and battery energy storage systems,early prediction of thermal runaway(TR)is of great significance.This work proposes a novel method for early warning and short-term predicti... To improve the safety of electric vehicles and battery energy storage systems,early prediction of thermal runaway(TR)is of great significance.This work proposes a novel method for early warning and short-term prediction of the TR.To give warning of TR long time in advance,a variety of battery models are established to extract key features,such as Pauta feature and Shannon entropy of voltage deviation,and then local outlier factor algorithm is used for feature fusion to detect abnormal cells.For the short-term prediction,the predefined threshold and variation rates are used.By measuring the real-time signals,such as voltage and temperature,their variation rates are calculated,based on which TR can be predicted exactly.The real data including TR from an electric vehicle are used to verify the method that it can give a warning on TR long time before it happens up to 74 days.This is remarkable for providing replacement recommendations for abnormal cells.It can also predict the occurrence of TR 33 seconds in advance to ensure the safe use of batteries. 展开更多
关键词 Lithium-ion batteries thermal runaway(TR) early warning local outlier factor Shannon entropy
下载PDF
Identification and characterization of irregular consumptions of load data 被引量:4
8
作者 Desh Deepak SHARMA S.N.SINGH +1 位作者 Jeremy LIN Elham FORUZAN 《Journal of Modern Power Systems and Clean Energy》 SCIE EI 2017年第3期465-477,共13页
The historical information of loadings on substation helps in evaluation of size of photovoltaic(PV)generation and energy storages for peak shaving and distribution system upgrade deferral. A method, based on consumpt... The historical information of loadings on substation helps in evaluation of size of photovoltaic(PV)generation and energy storages for peak shaving and distribution system upgrade deferral. A method, based on consumption data, is proposed to separate the unusual consumption and to form the clusters of similar regular consumption. The method does optimal partition of the load pattern data into core points and border points, high and less dense regions, respectively. The local outlier factor, which does not require fixed probability distribution of data and statistical measures, ranks the unusual consumptions on only the border points, which are a few percent of the complete data. The suggested method finds the optimal or close to optimal number of clusters of similar shape of load patterns to detect regular peak and valley load demands on different days. Furthermore,identification and characterization of features pertaining to unusual consumptions in load pattern data have been done on border points only. The effectiveness of the proposed method and characterization is tested on two practical distribution systems. 展开更多
关键词 Density based clustering Irregular consumption local outlier factor Peak demand Valley demand
原文传递
A method of searching for supernova candidates from massive galaxy spectra 被引量:2
9
作者 TU LiangPing LUO ALi +1 位作者 WU FuChao ZHAO YongHeng 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2010年第10期1928-1938,共11页
This paper presents a novel spectroscopic method for searching for supernova candidates from massive galaxy spectra,which is expected to be applied to the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAM... This paper presents a novel spectroscopic method for searching for supernova candidates from massive galaxy spectra,which is expected to be applied to the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST).This method includes mainly five steps.The first step is spectral preprocessing,including removing spectral noise using wavelet transform,spectral de-redshift,etc.The second step is decomposition of galactic spectra;we can get the galaxy component and supernova component and calculate the Supernova Statistical Characterization Vector (SNSCV) of each galaxy spectrum.The third step is to decrease samples in all the galaxy spectral datasets according to SNSCV of each spectrum,and to use the LOF (Local Outlier Factor)-based outlier detection algorithm to obtain the preliminary selected spectral data.The fourth step is template matching by cross-correlation,according to the matched results we get the secondary selected spectral data.Finally,we choose the final supernova candidates manually through checking the spectral features characteristic of a supernova.By the spectroscopic method proposed in this paper,thirty-six supernova candidates have been detected in a dataset including 294843 galaxy spectra from the Sloan Digital Sky Survey Data Release 7.Nine of these objects are detected first and the other twenty-seven have been reported in other publications (fifteen of which are detected and reported first by us).The twenty-four new super-nova candidates include twenty Ia type supernova candidates,three Ic type supernova candidates and one II type supernova candidate. 展开更多
关键词 SUPERNOVAE decomposition of galaxy spectrum sample decrease local outlier factor cross-correlation matching.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部