We present a study on the single event transient (SET) induced by a pulsed laser in different silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with the structure of local oxidation of silicon ...We present a study on the single event transient (SET) induced by a pulsed laser in different silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with the structure of local oxidation of silicon (LOCOS) and deep trench isolation (DTI). The experimental results are discussed in detail and it is demonstrated that a SiGe HBT with the structure of LOCOS is more sensitive than the DTI SiGe HBT in the SET. Because of the limitation of the DTI structure, the charge collection of diffusion in the DTI SiGe HBT is less than that of the LOCOS SiGe HBT. The SET sensitive area of the LOCOS SiGe HBT is located in the eollector-substrate (C/S) junction, while the sensitive area of the DTI SiGe HBT is located near to the collector electrodes.展开更多
The mechanism of single-event gate-rupture in an N-channel VDMOS in a space radiation environment was analyzed. Based on the mechanism, a novel structure of VDMOS for improving single-event gate-rupture is proposed, a...The mechanism of single-event gate-rupture in an N-channel VDMOS in a space radiation environment was analyzed. Based on the mechanism, a novel structure of VDMOS for improving single-event gate-rupture is proposed, and the structure is simulated and it is demonstrated that it can improve a VDMOS SEGR threshold voltage by 120%. With this structure, the specific on-resistance value of a VDMOS is reduced by 15.5% as the breakdown voltage almost maintains the same value. As only one mask added, which is local oxidation of silicon instead of an active processing area, the new structure VDMOS it is easily fabricated. The novel structure can be widely used in high-voltage VDMOS in a space radiation environment.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 61274106
文摘We present a study on the single event transient (SET) induced by a pulsed laser in different silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) with the structure of local oxidation of silicon (LOCOS) and deep trench isolation (DTI). The experimental results are discussed in detail and it is demonstrated that a SiGe HBT with the structure of LOCOS is more sensitive than the DTI SiGe HBT in the SET. Because of the limitation of the DTI structure, the charge collection of diffusion in the DTI SiGe HBT is less than that of the LOCOS SiGe HBT. The SET sensitive area of the LOCOS SiGe HBT is located in the eollector-substrate (C/S) junction, while the sensitive area of the DTI SiGe HBT is located near to the collector electrodes.
基金Project supported by the Pre-Research Foundation of China(No.51311050202)
文摘The mechanism of single-event gate-rupture in an N-channel VDMOS in a space radiation environment was analyzed. Based on the mechanism, a novel structure of VDMOS for improving single-event gate-rupture is proposed, and the structure is simulated and it is demonstrated that it can improve a VDMOS SEGR threshold voltage by 120%. With this structure, the specific on-resistance value of a VDMOS is reduced by 15.5% as the breakdown voltage almost maintains the same value. As only one mask added, which is local oxidation of silicon instead of an active processing area, the new structure VDMOS it is easily fabricated. The novel structure can be widely used in high-voltage VDMOS in a space radiation environment.