A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main proper...A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.展开更多
In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space w...In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.展开更多
In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalit...In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.展开更多
As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many o...As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.展开更多
By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential ...By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it. Global and local superlinear/ quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.展开更多
It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we pr...It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.展开更多
This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new...This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.展开更多
For symmetric tensors,computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere.In this paper,we present an adaptive trustregion method for generalized eigenvalues of...For symmetric tensors,computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere.In this paper,we present an adaptive trustregion method for generalized eigenvalues of symmetric tensors.One of the features is that the trust-region radius is automatically updated by the adaptive technique to improve the algorithm performance.The other one is that a projection scheme is used to ensure the feasibility of all iteratives.Global convergence and local quadratic convergence of our algorithm are established,respectively.The preliminary numerical results show the efficiency of the proposed algorithm.展开更多
基金This work was supported by the National Natural Science Foundation of China (10201001, 70471008)
文摘A noninterior continuation method is proposed for semidefinite complementarity problem (SDCP). This method improves the noninterior continuation methods recently developed for SDCP by Chen and Tseng. The main properties of our method are: (i) it is well d.efined for the monotones SDCP; (ii) it has to solve just one linear system of equations at each step; (iii) it is shown to be both globally linearly convergent and locally quadratically convergent under suitable assumptions.
基金supported by the National Natural Science Foundation of China(11401126,71471140 and 11361018)Guangxi Natural Science Foundation(2016GXNSFBA380102 and 2014GXNSFFA118001)+2 种基金Guangxi Key Laboratory of Cryptography and Information Security(GCIS201618)Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(YQ15112 and YQ16112)China
文摘In this paper, we present a nonmonotone smoothing Newton algorithm for solving the circular cone programming(CCP) problem in which a linear function is minimized or maximized over the intersection of an affine space with the circular cone. Based on the relationship between the circular cone and the second-order cone(SOC), we reformulate the CCP problem as the second-order cone problem(SOCP). By extending the nonmonotone line search for unconstrained optimization to the CCP, a nonmonotone smoothing Newton method is proposed for solving the CCP. Under suitable assumptions, the proposed algorithm is shown to be globally and locally quadratically convergent. Some preliminary numerical results indicate the effectiveness of the proposed algorithm for solving the CCP.
基金supported by Guangdong Provincial Zhujiang Scholar Award Project,National Science Foundation of China(10671163,10871031)the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department(06A069,06C824)
文摘In this paper,we present a smoothing Newton-like method for solving nonlinear systems of equalities and inequalities.By using the so-called max function,we transfer the inequalities into a system of semismooth equalities.Then a smoothing Newton-like method is proposed for solving the reformulated system,which only needs to solve one system of linear equations and to perform one line search at each iteration. The global and local quadratic convergence are studied under appropriate assumptions. Numerical examples show that the new approach is effective.
基金Supported by National Natural Science Foundation of China (No.10871144)the Seed Foundation of Tianjin University (No.60302023)
文摘As a basic mathematical structure,the system of inequalities over symmetric cones and its solution can provide an effective method for solving the startup problem of interior point method which is used to solve many optimization problems.In this paper,a non-interior continuation algorithm is proposed for solving the system of inequalities under the order induced by a symmetric cone.It is shown that the proposed algorithm is globally convergent and well-defined.Moreover,it can start from any point and only needs to solve one system of linear equations at most at each iteration.Under suitable assumptions,global linear and local quadratic convergence is established with Euclidean Jordan algebras.Numerical results indicate that the algorithm is efficient.The systems of random linear inequalities were tested over the second-order cones with sizes of 10,100,,1 000 respectively and the problems of each size were generated randomly for 10 times.The average iterative numbers show that the proposed algorithm can generate a solution at one step for solving the given linear class of problems with random initializations.It seems possible that the continuation algorithm can solve larger scale systems of linear inequalities over the secondorder cones quickly.Moreover,a system of nonlinear inequalities was also tested over Cartesian product of two simple second-order cones,and numerical results indicate that the proposed algorithm can deal with the nonlinear cases.
文摘By introducing a smooth merit function for the median function, a new smooth merit function for box constrained variational inequalities (BVIs) was constructed. The function is simple and has some good differential properties. A damped Newton type method was presented based on it. Global and local superlinear/ quadratic convergence results were obtained under mild conditions, and the finite termination property was also shown for the linear BVIs. Numerical results suggest that the method is efficient and promising.
基金supported by the National Natural Science Foundation of China (Grants No.10571134 and 10871144)the Natural Science Foundation of Tianjin (Grant No.07JCYBJC05200)
文摘It is well known that the symmetric cone complementarity problem(SCCP) is a broad class of optimization problems which contains many optimization problems as special cases.Based on a general smoothing function,we propose in this paper a non-interior continuation algorithm for solving the monotone SCCP.The proposed algorithm solves at most one system of linear equations at each iteration.By using the theory of Euclidean Jordan algebras,we show that the algorithm is globally linearly and locally quadratically convergent under suitable assumptions.
基金the Scientific Research Foundation of Hunan Provincial Education Department, No. 02B021, and the National Natural Science Foundation of China, No. 10171008.
文摘This paper presents a new trust-region algorithm for n-dimension nonlinear optimization subject to m nonlinear inequality constraints. Equivalent KKT conditions are derived, which is the basis for constructing the new algorithm. Global convergence of the algorithm to a first-order KKT point is established under mild conditions on the trial steps, local quadratic convergence theorem is proved for nondegenerate minimizer point. Numerical experiment is presented to show the effectiveness of our approach.
基金supported in part by the NNSF of China(11171003)the Innovation Talent Training Program of Science and Technology of Jilin Province of China(20180519011JH)+2 种基金the Science and Technology Development Project Program of Jilin Province(20190303132SF)The research of Mingyuan Cao is partially supported by the Project of Education Department of Jilin Province(JJKH20200028KJ)The research of Qingdao Huang is partially supported by the NNSF of China(11171131).
文摘For symmetric tensors,computing generalized eigenvalues is equivalent to a homogenous polynomial optimization over the unit sphere.In this paper,we present an adaptive trustregion method for generalized eigenvalues of symmetric tensors.One of the features is that the trust-region radius is automatically updated by the adaptive technique to improve the algorithm performance.The other one is that a projection scheme is used to ensure the feasibility of all iteratives.Global convergence and local quadratic convergence of our algorithm are established,respectively.The preliminary numerical results show the efficiency of the proposed algorithm.